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Modeling and Stability Analysis
of an Axially Moving Beam With
Frictional Contact1
This paper considers a moving beam in frictional contact with pads, making the system
susceptible for self-excited vibrations. The equations of motion are derived and a stability
analysis is performed using perturbation techniques yielding analytical approximations
to the stability boundaries. Special attention is given to the interaction of the beam and
the rod equations. The mechanism yielding self-excited vibrations does not only occur in
moving beams, but also in other moving continua such as rotating plates, for example.
�DOI: 10.1115/1.2755166�

1 Introduction
In many engineering applications, self-excited vibrations are an

unwanted phenomenon. They occur when instabilities arise in a
system. There can be various reasons for these instabilities. In this
paper, we are particularly interested in self-excited vibrations
caused by friction. An example for oscillations of this type is the
squealing of disk brakes considered by some of the authors in a
previous paper �1�, where a discretization approach was used. In
the present paper, we give a continuous approach for the traveling
beam with clamped boundary conditions that is in frictional con-
tact with two idealized brake pads. An engineering application for
the model might be traveling belts, band saws, etc.

Many contributions on axially moving media can be found in
the literature. A fundamental work is by Wickert and Mote �2�
who investigate the moving string and the moving beam showing
mathematical properties and calculating numerically the spectrum
of the beam for simply supported and clamped boundary condi-
tions. In a second paper �3�, they develop a complex modal analy-
sis for continuous systems using a first-order partial differential
equation with respect to time. A similar approach has been devel-
oped for continuous systems by Meirovitch in �4�, which can also
be extended to continuous gyroscopic systems as done in �5�. In
�6�, Parker investigates the eigenvalues of gyroscopic continua in
the vicinity of the critical speeds using perturbation techniques on
the first-order system. In particular, he analytically calculates the
critical speeds for the simply supported moving beam. In a paper
by Seyranian and Kliem �7�, the splitting of the double zero ei-
genvalues at the critical speeds of the beam is investigated using
perturbation techniques directly on the operator polynomial.

In all the papers cited above, the boundary conditions were
self-adjoint. Only a few authors consider the influence of noncon-
servative forces on axially moving continua. For example, Cheng
and Perkins study the stability of a string sliding through an elas-
tically supported dry friction guide �8�. However, in their model,
the friction forces only affect the tension of the string and, there-
fore, no instability occurs before the first critical speed. A related
problem is the stationary beam under moving frictional forces
discussed in �9�. In the literature about rotating plates, more pa-
pers dealing with nonconservative forces can be found, for ex-
ample, we mention �10,11�.

For the traveling beam considered in our paper, the frictional
contact makes the problem nonconservative and introduces inter-
mediate transition conditions into the boundary value problem.
Special attention is given to the coupling of beam and rod equa-
tions using the assumptions of the Euler-Bernoulli theory in the
linear elasticity problem and taking into account the exact contact
kinematics of the beam and the pads.

We obtain a distributed gyroscopic system with dissipative and
nonconservative positional forces originating from the pads. Since
the gyroscopic stability is highly sensitive to the influence of the
dissipative and especially nonconservative positional forces �see
�12–22��, the stability analysis needs more sophisticated tools than
the ones used in the previous papers. Recently, Kirillov and Sey-
ranian �23–25� developed an effective method of analyzing stabil-
ity boundaries and its singularities for distributed nonconservative
systems based on the bifurcation theory of eigenvalues of two
point non-self-adjoint boundary value problems with the differen-
tial expression and boundary conditions depending on the spectral
parameter and multiple physical parameters. We develop this ap-
proach further to study boundary value problems with intermedi-
ate transition conditions.

The outline of the paper is as follows. We first derive the model
from the theory of linear elasticity using the principle of virtual
work. The stability of the system is then investigated by interpret-
ing damping and nonconservative forces as perturbations. We use
a discretization approach for the stability analysis of a nonper-
turbed conservative gyroscopic system; then, based on numeri-
cally obtained data, we perform a perturbation analysis directly on
the boundary value problem of the nonconservatively loaded
beam.

2 Derivation of the Mathematical Model
We consider an axially moving Euler-Bernoulli beam sliding

through two idealized massless brake pads with constant velocity
q̇0; see Fig. 1. We introduce a spatially fixed frame with unit
vectors ex, ey, and ez and a frame with unit vectors ex̃, eỹ, and ez̃
moving with the undeformed configuration of the beam. The beam
is pretensioned with the force � before applying the pads. As
usual in Euler-Bernoulli theory, we neglect the stresses �y, �z, and
�yz, and assume that the cross sections of the beam stay planar and
perpendicular to the neutral plane. The mass of a cross section is
assumed to be concentrated on the neutral plane and is assumed to
be constant between the two supports. Each point on the neutral
plane has a displacement u�x , t� in the x direction and w�x , t� in
the z direction counted out of the prestressed configuration with
no pads in contact with the beam.

1Dedicated to Professor Franz Ziegler on the occasion of his 70th birthday.
2Visiting from the Institute of Mechanics, Moscow State Lomonosov University,

Michurinskii pr. 1, 119192 Moscow, Russia, e-mail: kirillov@imec.msu.ru
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received January 26, 2007; final manu-
script received May 3, 2007; published online March 5, 2008. Review conducted by
Oliver M. O’Reilly.
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To derive the equations of motion, we use the principle of vir-
tual work with the assumptions stated above giving

�
0

L�
A

��
d2

dt2pM · �pM + ��0 + E�����dA dx = �
i

�Fi · �pi�

�1�

for an extensible Euler-Bernoulli beam, where

� = u� +
1

2
w�2 − zw� �2�

is the strain and �0 is the pretension of the beam. The forces Fi
are the contact forces between the pads and the beam and �pi are
the virtual velocities/displacements of the contact points on the
beam. In order to calculate the contact forces, we have to consider
the contact kinematics.

2.1 Kinematics. A point on the neutral fiber is

pM�x,t� = �x + u�x,t��ex + w�x,t�ez �3�

where x=q0�t� due to the kinematic constraint. When differentiat-
ing pM�x , t� with respect to time, we therefore have

d

dt
pM�x,t� = �q̇0 + ut�x,t� + q̇0ux�x,t��ex + �wt�x,t� + q̇0wx�x,t��ez

�4�

Since cross sections stay planar and perpendicular to the neutral
plane, it is possible to describe points on the upper surface of the
beam through points on the neutral fiber, which is parametrized by

f�x,z,t� = z − w�x,t� = 0 �5�

The position vector of a point on the upper surface of the beam is
given by

p�x,t� = �x + u�x,t��ex + w�x,t�ez −
h

2
e��x,t� �6�

where

e��x,t� =
�f�x,z,t�
	�f�x,z,t�	

�7�

is the gradient vector to the point x on the neutral plane. The
position vector of the point currently in contact with the upper pad
is given by

�xP + u�xP,t��ex + w�xP,t�ez −
h

2
e��xP,t� �8�

where since we work in Lagrangian coordinates xP=a+�xP is the
position of the point on the neutral plane corresponding to the
point currently in contact with the upper pad, as shown in Fig. 2.

From geometrical considerations, it is seen that �xP= �̄xP
+u�a+�xP , t�, where

�̄xP = −
h

2
sin�arctan w��a + �̄xP,t�� �9�

=−
h

2

w��a + �̄xP,t�

1 + w��a + �̄xP,t�2

�10�

that is a fixed point equation of the type

�̄xP
k+1 = g��̄xP

k� �̄xP
0 = 0 �11�

Since 	w��x , t� 	 �1 we obtain

	g�x� − g�y�	 = � h

2

w��x,t�

1 + w��x,t�2

−
h

2

w��y,t�

1 + w��y,t�2� 	 1

�12�

and therefore the mapping g is contracting. The Banach fixed

point theorem is therefore applicable and �̄xP can be iteratively
determined to arbitrary precision. The quantity �xP is now deter-

mined from �xP= �̄xP+u�a+�xP , t�, which is also a fixed point
equation that can be solved using the Banach fixed point theorem.
For the lower contact point, we proceed similarly. The position
vectors and, hence, the virtual velocities of the contact points, can
thus be determined to arbitrary precision.

2.2 Contact Forces. The contact forces between the surface
of the beam and the pads have already been stated in �1�, but are
restated here for the convenience of the reader.

The normal force is perpendicular to the surface of the beam
and is therefore given by:

NP = − NP̄ = NPe��xP,t� �13�

We assume the applicability of Coulomb’s law of friction, and
therefore the friction force has the magnitude RP=
NP, and is
directed against the relative velocity between the point P on the

beam and the point P̄ on the pad �see Fig. 3�, so that

RP = − RP̄ = RP

vP̄ − vP

	vP̄ − vP	
�14�

Throughout the paper we exclude stick slip, which in the linear
case, is assured by the condition

	vP̄ − vP	 � 0 ⇒ 	u̇�a,t�	 + 	ẇ��a,t�	
h

2
	 q̇0 �15�

From a force balance at the upper pad

0 = NP cos � − RP sin � − N0 + kzP̄ + dżP̄ �16�

where zP̄ is the vertical displacement of the point P̄ on the pad,
with

a

q0

ex
ey

ez

ex̃

eỹ

ez̃

µ

ρ,A,E, I, L, h, κ

q̇0

k

k

d

d

Fig. 1 Axially moving beam
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Fig. 2 Contact kinematics
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� = arctan�w��xP,t�� �17�

we can now calculate the magnitude of NP, so that the contact
forces are completely defined. Since in Euler-Bernoulli theory the
cross sections of the beam stay planar, we can replace NP and RP
by an equivalent system of loads consisting of the force BPex
+APez and a torque MP, both acting on the neutral fiber. Again, we
can proceed similarly for the lower contact point Q. The linear-
ized expressions for the forces and torques are then

BP = − 
�N0 − kw�xP,t� − dẇ�xP,t�� − N0�1 + 
2�w��xP,t�
�18�

AP = N0 − kw�xP,t� − dẇ�xP,t� �19�

MP =
1

2
h�
2N0w��xP,t� + 
N0 − k
w�xP,t� − d
ẇ�xP,t��

�20�

BQ = − 
�N0 + kw�xQ,t� + dẇ�xQ,t�� + N0�1 + 
2�w��xQ,t�
�21�

AQ = − N0 − kw�xQ,t� − dẇ�xQ,t� �22�

MQ =
1

2
h�
2N0w��xQ,t� − 
N0 − k
w�xQ,t� − d
ẇ�xQ,t��

�23�

2.3 Boundary Value Problem. Due to the contact forces, the
derivatives w� and w� will not be continuous at the points xP and
xQ, i.e., their left and right limits do not coincide; for example
w��xP

− , t��w��xP
+ , t�. Therefore, we have to consider three different

segments of the beam as shown in Fig. 4.
Carrying out the variations in �1� requiring that the functions

satisfy the geometric boundary conditions and applying the main
theorem of variational calculus, we obtain a boundary value prob-
lem for the beam in w

�A�ẅ�x,t� + 2q̇0ẇ��x,t� + �q̇0
2 −

�

�A
w��x,t�� + EIwIV�x,t� = 0

�24�
with boundary conditions

w�0,t� = w�L,t� = 0 w��0,t� = w��L,t� = 0 �25�
and transition conditions

AP,Q + EI�w��xP,Q
− ,t� − w��xP,Q

+ ,t�� = 0 �26�

MP,Q + EI�w��xP,Q
− ,t� − w��xP,Q

+ ,t�� = 0 �27�

Furthermore, we get a boundary value problem for the rod in u,
which consists of the partial differential equation

�Aü�x,t� + 2q̇0�Au̇��x,t� + �q̇0
2�A − EA�u��x,t� = 0 �28�

with boundary conditions

u�0,t� = u�L,t� = 0 �29�
and transition conditions

EA�u��xP,Q
− ,t� − u��xP,Q

+ ,t�� − BP,Q = 0 �30�
Two important facts are to be noted: first of all, from Eqs. �19� and
�20� we observe that u does not occur in the boundary value
problem of the beam and the beam equations can be solved inde-
pendently of the boundary value problem for the rod. However,
vibrations of the beam very well excite the rod as is seen from
�18� and �21�. That means the stability behavior of the system is
determined by the beam equations, at least beyond the critical
speed for the rod. At a first view, this one-sided coupling might be
surprising, since in conservative problems, this phenomenon can-
not occur. The present problem is, however, nonconservative due
to the friction forces and it can be seen that the coupling vanishes
for 
=0. The second fact to be noted is that the boundary value
problems are nonconservative because of the transition conditions
through which the contact forces between beam and pads enter the
system.

Since segment II of the beam is very small, it is possible to
simplify the transition conditions by expanding terms containing
xP or xQ around x=a; for example

u��xP
+,t� = u��a,t� + O�w2� �31�

The transition conditions at xP and xQ then simplify to a single
transition condition at x=a. The transition conditions �26�–�30�
are thus replaced by

A + EI�w��a−,t� − w��a+,t�� = 0 �32�

NP

RP

NP

RP

P

P̄

N0 − k(zP̄ + h/2) − d żP̄

Q̄

Q

NQ

RQNQ

RQ

N0 + k(zQ̄ − h/2) + d żQ̄

Fig. 3 Contact forces

NP

RP

NQ

RQ

segment I II III

Fig. 4 Segments of the beam
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M + EI�w��a−,t� − w��a+,t�� = 0 �33�

B − EA�u��a−,t� − u��a+,t�� = 0 �34�

where A=AP+AQ=−2kw�a , t�−2dẇ�a , t�, M =MP+MQ

=h�N0
2w��a , t�−k
w�a , t�−d
ẇ�a , t�� and B=BP+BQ=−2
N0.
The simplification of the transition conditions therefore leads to a
complete uncoupling of the boundary value problems for the
beam and the rod.

2.4 Discretization. In �1�, the authors investigated the travel-
ing beam using a Ritz discretization approach. We will use these
discretized equations and compare them to the results obtained
from the continuous approach taken in this paper. Using the Ritz
expansion in �1�

w�x,t� = �
i=1

I

Wi�x�qi�t� �35�

yields nonlinear equations of motion q̈= f�q , q̇�, which can be lin-
earized to

Mq̈ + �G + D�q̇ + Kq = 0 M = MT G = − GT

D � DT K � KT �36�

where

mji = �A�
0

L

WjWidx �37�

gji = �Aq̇0�
0

L

�WjWi� − Wj�Wi�dx

�38�
dji = d�2Wj�a�Wi�a� + h
Wj��a�Wi�a��

kji = �� − �Aq̇0
2��

0

L

Wj�Wi�dx + EI�
0

L

Wj�Wi�dx + 2kWj�a�Wi�a�

− hk
Wj��a�Wi�a� + hN0�1 + 
2�Wj��a�Wi��a�

−
h2N0


2
Wj��a�Wi��a� �39�

Using a result of Karapetjan �16� and Lakhadanov �19� in �1�, it
was concluded that in the undamped case d=0, the stability do-
main of the nonconservative gyroscopic system is a set of measure
zero in the space of the system parameters. Provided that the Ritz
expansion converges to the solution, which is the case choosing
appropriate shape functions, this result carries over to the continu-
ous problem. It would now be feasible to perform a perturbation
analysis of these discretized equations. However, we prefer to
perform a perturbation analysis directly on the continuous system,
using the discretization only to calculate the spectrum of the un-
perturbed problem.

Before continuing with the investigation of the unperturbed
problem, we draw the reader’s attention to a difference between
the continuous approach used to derive the boundary value prob-
lem, and the Ritz discretization approach taken from �1�. From the
derivation of the simplified boundary value problem in Sec. 2.3, it
is clear that, since �xP,Q occur only in the arguments of u and w,
and are expandable in u and w without having a constant part,
they do in fact not enter the simplified boundary value problem.
However, when considering the virtual work of the contact forces
in the Ritz expansion, we calculated

�WA = AP�
i=1

I

Wi�a + �xP��qi�t� + AQ�
i=1

I

Wi�a + �xQ��qi�t�

�40�
where we expanded

Wi�a + �xP� = Wi�a� + Wi��a��xP + ¯ = Wi�a�

+ Wi��a�
h

2�
j=1

I

�Wj��a�qj + O�qj
2�� �41�

without considering the stretching of the beam. Due to the con-
stant terms in AP and AQ, we get terms of the form
hN0Wj��a�Wi��a� in the discretized equation of motion, that would
not have shown up neglecting �xP,Q. Similar terms arise from
MP,Q. The explanation for this lies in the fact that in the Ritz
discretization, the energy expressions were considered up to sec-
ond order in the qi, whereas to derive the boundary value problem,
a purely geometric linearization was performed with respect to w
and u. To get comparable results from the perturbation approach
on the discretized system, it would therefore be appropriate to
neglect the influence of �xP,Q and perform a geometric lineariza-
tion. Since we only need the discretization for the unperturbed
problem, the corresponding equations are not stated separately.

3 Stability Analysis
In this section, we perform a stability analysis of the beam with

the simplified transition conditions �32� and �33�. Since the trans-
verse vibrations of the beam are of major interest in applications,
we concentrate on their investigation.

We assume that as in many squeal problems, the friction and
damping forces coming from the pads are small compared to in-
ertia, gyroscopic, and restoring terms. Therefore, we multiply all
forces coming from the pads with � if they come from damping in
the pad, and with  otherwise, with  and � serving as weights for
their contribution. Introducing the dimensionless time �=�t and
length x̄=x /L where �2=EI /�AL4 yields the dimensionless pa-
rameters

ā =
a

L
�̄ =

q̇0

L�
h̄ =

h

L
k̄ =

kL3

EI
d̄ =

�dL3

EI
N̄0 =

N0L2

EI

�̄ =
�L2

EI
�42�

Using the ansatz w�x̄ , t�=w�x̄�e�t where, after separation of time,
we use the same symbol w for notational simplicity, the boundary
value problem can now be stated as

L�w� = �2w + 2�̄�w� + ��̄2 − �̄�w� + wIV = 0 �43�

where L is a linear differential operator with boundary and tran-
sition conditions

U1�w� = U1
0�w� + U1

1�w� + �U1
1��w� = 0, . . . , U8�w� = U8

0�w�

+ U8
1�w� + �U8

1��w� = 0 �44�
where

Ui
0�w� = �0w�0� + �1w��0� + ¯ + �7w��1�

Ui
1,��w� = �0

,�w�ā −� + �1
,�w��ā −� + ¯ + �7

,�w��ā +� �45�

are linear forms in w�x̄� and its derivatives taken at x̄=0, x̄=1, x̄
= ā−, and x̄= ā+. In our case, they read

U1
0 = w�0� U2

0 = w��0� U3
0 = w�ā −� − w�ā +� �46�

U4
0 = w��ā −� − w��ā +� U5

0 = w��ā −� − w��ā +� U6
0 = w��ā −�

− w��ā +� �47�
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U7
0 = w�1� U8

0 = w��1� �48�

for the unperturbed problem, and the perturbations are given by

U5
1 = − h̄k̄
w�ā� + h̄N̄0
2w��ā� U5

1� = − h̄d̄
�w�ā� �49�

U6
1 = − 2k̄w�ā� U6

1� = − 2d̄�w�ā� �50�

other forms Ui
1,� being zero.

We now derive the boundary value problem adjoint to �43� and
�44�. We multiply the differential expression L�w� by a function
v�x̄� and integrate over the intervals �0, ā� and �ā ,1� since we are
planning to use integration by parts and some of the derivatives of
w�x̄� are not continuous at x̄. Using the notation �w ,v�
=�0

ā −
wv̄dx̄+�ā+

1 wv̄dx̄, v̄ being the complex conjugate to v,we ob-
tain

�L�w�,v� = �w,L*�v�� + �
i=1

16

Ui�w�V17−i�v� �51�

where we expressed the boundary terms and terms occurring at
x̄= ā − and x̄= ā+ in terms of linear forms U1 , . . . ,U8, which are, in
fact, the boundary and transition conditions, and supplementary
forms U9 , . . . ,U16, such that we can express all of the boundary
and transition terms uniquely in the Ui.

From �51� we obtain the differential equation for the adjoint
problem

L*�v� = �̄2v − 2�̄�̄v� + ��̄2 − �̄�v� + vIV = 0 �52�

with boundary conditions

V1�v� = V1
0�v� + V1

1�v� + �V1
1��v� = 0, . . . , V8�v� = V8

0�v�

+ V8
1�v� + �V8

1��v� = 0

where

V1
0 = v�1� V2

0 = − v��1� V3
0 = v�ā −� − v�ā +�

V4
0 = − v��ā −� + v��ā +� �53�

V5
0 = ��̄2 − �̄��v�ā −� − v�ā +�� + v��ā −� − v��ā +� �54�

V6
0 = − ��̄2 − �̄��v��ā −� − v��ā +�� − �v��ā −� − v��ā +��

+ 2�̄��v�a−� − v�a+�� �55�

V7
0 = − v�0� V8

0 = v��0� �56�

and Vi
1,� are skipped since for our analysis, only the adjoint to the

unperturbed problem is required. The supplementary expressions
read

V9
0 = ��̄2 − �̄�v�1� + v��1� �57�

V10
0 = − ��̄2 − �̄�v��1� − v��1� + 2�̄�v�1� V11

0 = v�ā +� �58�

V12
0 = − v��ā +� V13

0 = ��̄2 − �̄�v�ā +� + v��ā +� �59�

V14
0 = − ��̄2 − �̄�v��ā +� − v��ā +� + 2�̄�v�a+� �60�

V15
0 = − ��̄2 − �̄�v�0� − v��0�

V16
0 = ��̄2 − �̄�v��0� + v��0� + 2�̄�v�0� �61�

3.1 Spectrum of the Unperturbed Problem. The unper-
turbed problem =�=0 is similar to the problem studied by Wick-
ert and Mote in �2�. It can be written as an operator polynomial

L�u� = �2M�u� + �G�u� + K�u� = �2u + 2�̄�u� + ��̄2 − �̄�u� + uIV

= 0 �62�

M = 1 G = 2�̄
�

� x̄
K = ��̄2 − �̄�

�2

� x̄2 +
�4

� x̄4 �63�

with boundary conditions

u�0� = u�1� = 0 u��0� = u��1� = 0 �64�

We now use the function u for the unperturbed problem, which is
not to be confused with the axial displacement appearing in the
rod equations. Note that we consider clamped boundary condi-
tions in contrast to the simply supported boundary conditions
studied in �2,6,7�.

Because of the boundary conditions �64� the operators M and K
are symmetric and the quantities �M�u� ,u� and

�K�u�,u� =�
0

1

���̄2 − �̄�u� + uIV�ūdx̄

=�
0

1

�− ��̄2 − �̄�u�ū� + u�ū��dx̄ �65�

are real, where ū is the complex conjugate of u. The operator G�u�
is skew symmetric i.e., �G�u� ,u�=−�u ,G�u�� is a purely imagi-
nary quantity.

The eigenvalues of the unperturbed boundary value problem are
found setting u�x̄�=e�x̄, which yields four different solutions �i

depending on �. Hence the eigenfunctions of the unperturbed
problem are given by

u�x̄� = A1e�1x̄ + A2e�2x̄ + A3e�3x̄ + A4e�4x̄ �66�

where the Ai are constants. To determine the Ai, we substitute u�x̄�
into the four boundary conditions, which yields a linear homoge-
neous system of equations U���A=0. For nontrivial solutions, the
determinant of the coefficient matrix has to vanish. The values �
thus obtained are the eigenvalues of the problem �see �26�, �27��.
Having calculated the eigenvalues, the eigenfunctions u�x̄� can be
calculated. Eigenfunctions corresponding to different eigenvalues
are linearly independent. If an eigenvalue of multiplicity m occurs
and there are p�m linearly independent eigenfunctions, then to
every eigenfunction uk�x̄�, k=1, . . . , p corresponds a Jordan
�Keldysh� chain uk→u1

k , . . . ,umk

k of linearly independent associ-

ated functions u1
k�x̄� , . . . ,umk

k �x̄� defined by

L�uk� = 0 �67�

L�u1
k� +

1

1!

�L

��
�uk� = 0 �68�

. . . �69�

L�umk

k � +
1

1!

�L

��
�umk−1

k � + ¯ +
1

mk!

�mkL

��mk
�uk� = 0 �70�

with m1+ ¯ +mp=m− p �27�.
Taking the scalar product of L�u� with an eigenfunction of the

adjoint problem, which is easily seen to be v=u, for purely imagi-
nary eigenvalues � we obtain

�L�u�,u� = �2�M�u�,u� + ��G�u�,u� + �K�u�,u� = 0 �71�

from which we get �see e.g., �15��

� =
− �G�u�,u� � 
�

2�M�u�,u�
�72�

� = �G�u�,u�2 − 4�K�u�,u��M�u�,u� �73�

Note that only one of the � in �72� is an eigenvalue of the system.
It can, however, still be seen from �72� that on the divergence
boundary �K�u� ,u�=0 holds, and that on the flutter boundary we
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have �=0. Note that for �=0, it follows from �72� that

2�M�u�,u�� + �G�u�,u� = 0 �74�
which is, in fact, the necessary and sufficient condition for exis-
tence of the associated function u1 following from �68�, and its
analog is known in aero-elasticity problems �28� as flutter condi-
tion. This reflects the fact �see e.g., �29�� also clear from the
perturbation formulas derived in Secs. 3.2.1 and 3.2.2 that generi-
cally on the stability boundary of a gyroscopic system, we always
find a double eigenvalue with a Jordan chain �30�.

We can also observe the fact known for discrete systems �see
e.g., �15�� that the gyroscopic system has to pass the divergence
boundary before it can experience flutter, since from �72� it is seen
that flutter can only occur with a negative definite stiffness
operator.

Since the characteristic equation is highly nonlinear, we prefer
to use the discretization approach of the previous section to cal-
culate the eigenvalues of the problem. With �==0, we obtain
the eigenvalue curves shown in Fig. 5, which qualitatively agree
with the curves obtained in �2�.

In the special case that �̄=0, we can calculate the critical
speeds analytically by substituting �̄=0 in �62� and using �66�.
For nontrivial solutions, we obtain the condition

0 = sin
�̄

2
�sin

�̄

2
−

�̄

2
cos

�̄

2
 �75�

which is satisfied for �̄=2�n and �̄ /2=tan �̄ /2. At the first critical
speed �̄=2�, we have a double zero eigenvalue with a Jordan
chain. For �̄=0, we can also analytically obtain the corresponding
eigenfunction

u�x̄� = C1�1 − cos�2�x̄�� �76�
and the associated function

u1�x̄� = C2�1 +
C1

2�
− cos��x̄� −

5

2�2 sin��x̄� �77�

where C1 and C2 are undetermined constants. For �̄�0, we pro-
ceed similarly; the equations are lengthier and are not stated here.

3.2 Perturbation Analysis of the Nonconservative
Problem. To analyze the stability of the gyroscopic system with
dissipative and nonconservative positional forces, we use the ap-
proach of �23–25� based on the perturbation theory of Vishik and
Lyusternik �31�. We will study the stability domains for the sys-
tem �43�, �44� depending on the parameters �̄, �, and . We per-
turb the system around a fixed speed i.e., �̄= �̃+� and assume that
the small parameters �, �, and  are smooth functions of the

parameter �. This corresponds to a variation along a smooth curve
parameterized by � in the parameter space. It is possible to expand
����, ����, and ���around �=0, assuming that ��0�=��0�=�0�
=0, for example,

��� =
d�0�

d�
� + ¯ = 1� + ¯ �78�

���� =
d��0�

d�
� + ¯ = �1� + ¯ �79�

���� =
d��0�

d�
� + ¯ = �1� + ¯ �80�

Assuming this kind of perturbation, we write the boundary value
problem perturbed up to first order in � as

L�w� + �L1��w� = 0 �81�

U1�w� = U1
0�w� + �U1

��w� = 0, . . . ,U8�w� = U8
0�w� + �U8

��w� = 0

�82�

where L�w� is defined by �43�:

L1��w� = �1�2�w� + 2�̃w�� �83�

Ui
0�w� are defined by �46�–�48� and

Ui
1� = 1Ui

1 + �1Ui
1� �84�

with Ui
1,� defined in �49� and �50�.

It is known that generically only simple and double eigenvalues
occur in the spectrum of a one-parameter gyroscopic system �30�,
as we can also see from Fig. 5. In the following, we expand the
eigenvalues of the perturbed problem in a series, depending on the
Jordan structure of the eigenvalue of the unperturbed problem.
The leading terms of these expansions are analytical approxima-
tions to the stability boundaries of the system in the parameter
space.

3.2.1 Perturbation of Simple Eigenvalues. According to �31�,
for a simple eigenvalue �0 and the corresponding eigenfunction
u�x̄�, we set

w�x̄� = u�x̄� + �w1
��x̄� + ¯ �85�

� = �0 + ��1
� + ¯ = �0 + ��1�1

 + �1�1
� + �1�1

�� + ¯ �86�

Taking into account the dependence of L�w� on �, we frequently
use the notation

L�w� = �L�����w� �87�

Substitution into �81� yields

�L��0 + ��1
� + ¯ � + �L1���0 + ��1

� + ¯ ���u + �w1
� + ¯ � = 0

�88�

where we can write

�L��0 + ��1
�� + ¯ ��u� = �L��0���u� + ��1

�� �L

��
��0���u� + ¯

= L�u� + ��1
��L

��
�u� + ¯ �89�

Proceeding similarly with L1�, we arrive at

L�u� + ���1
��L

��
�u� + L�w1

�� + L1��u�� + ¯ = 0 �90�

Similarly, we get

ρ̄
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Fig. 5 Eigenvalue curves for �̄=3�
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Ui
0�u� + ���1

��Ui
0

��
�u� + Ui

0�w1
�� + Ui

1��u�� + ¯ = 0 �91�

Setting equal to zero the terms of same powers of � and multiply-
ing with the eigenfunction of the unperturbed adjoint problem v,
we obtain

�1
�� �L

��
�u�,v� + �L�w1

��,v� + �L1��u�,v� = 0 �92�

Using �L�w1
�� ,v�= �w1

� ,L*�v��+�i=1
n Ui

0�w1
��Vn+1−i

0 �v�, where n=16
for our particular problem, and

Ui
0�w1

�� = − �1
��Ui

0�u�
��

− Ui
1��u� �93�

we obtain a formula for �1
�, first derived by Kirillov and Seyranian

in �23–25� for general two-point non-self-adjoint boundary value
problems smoothly depending on the spectral parameter and a
vector of physical parameters:

�1
� = −

�L1��u�,v� − �i=1

n
Ui

1��u�Vn+1−i
0 �v�

� �L

��
�u�,v� − �i=1

n �Ui
0

��
�u�Vn+1−i

0 �v�

�94�

Substituting L1�=1L1+�1L1� and Ui
1�=1Ui

1+�1Ui
1�, using

�49�, �50�, and �53�–�61�, and taking into account that the eigen-
functions and their first derivatives are continuous �i.e., for ex-
ample u�ā+�=u�ā−�=u�ā��, we calculate �1

, �1
�, and �1

�, which for
our problem, read

�1
 =

− 2k̄u�ā�v̄�ā� + �h̄k̄
u�ā� − h̄N̄0
2u��ā��v̄��ā�

�
0

1

�2�0u + 2�̃u��v̄dx̄

�95�

�1
� =

− 2d̄�0u�ā�v̄�ā� + h̄d̄�0
u�ā�v̄��ā�

�
0

1

�2�0u + 2�̃u��v̄dx̄

�96�

and

�1
� = −

�
0

1

�2�0u� + 2�̃u��v̄dx̄

�
0

1

�2�0u + 2�̃u��v̄dx̄

�97�

Note that �94� can be regarded as the extension of the formulas
derived in �23–25� to the important case of problems containing
intermediate boundary conditions.

3.2.2 Perturbation of Double Eigenvalues. Following �31� for
double eigenvalues, we set

w�x̄� = u�x̄� + �
1
2 w1

��x̄� + ¯ �98�

� = �0 + �
1
2 �1

� + ¯ �99�

Expanding all the terms in powers of �
1
2 and ordering yields

�0: L�u� = 0 �100�

�
1
2 : �1

��L

��
�u� + L�w1

�� = 0 �101�

�: ��1
��21

2

�2L

��2 �u� + �2
��L

��
�u� + �1

��L

��
�w1

�� + L�w2
�� + L1��u� = 0

�102�

and similar expressions hold for the Ui, namely,

�0: Ui
0�u� = 0 �103�

�
1
2 : �1

��Ui
0

��
�u� + Ui

0�w1
�� = 0 �104�

�: ��1
��21

2

�2Ui
0

��2 �u� + �2
��Ui

0

��
�u� + �1

��Ui
0

��
�w1

�� + Ui
0�w2

�� + Ui
1��u�

= 0 �105�

From �101� follows w1
�=�1

�u1+Cu, where C is a constant. Multi-
plying the Jordan chain by v, we get

�v,L�w1
��� + �1

��v,
�L

��
�u�� = �

i=1

n

Ui
0�w1

��Vn+1−i
0 �v� + �1

��v,
�L

��
�u��

= − �1
��

i=1

n
�2Ui

0

��2 �u�Vn+1−i
0 �v�

+ �1
��v,

�L

��
�u�� = 0 �106�

making use of �104�. Multiplication of �102� by v and integration
by parts using �105� yields

�v,L�w2
��� = �

i=1

n

Ui
0�w2

��Vn+1−i
0 �v� = − �

i=1

n ���1
��21

2

�2Ui
0

��2 �u�

+ �2
��Ui

0

��
�u� + �1

��Ui
0

��
�w1� + Ui

1��u��Vn+1−i
0 �v�

= − ��1
��21

2
�v,

�2L

��2 �u�� − �2
�� �L

��
�u�,v�

− �1
�� �L

��
�w1

��,v� − �L1��u�,v�

With w1
�=�1

�u1+Cu and using �106�, this simplifies to the formula

��1
��2 = −

1

�2
��L1��u�,v� − �

i=1

n

Ui
1��u�Vn+1−i

0 �v�� �107�

�2 = �
r=1

2
1

r!�� �rL

��r �u2−r�,v� − �
i=1

n
�rUi

0

��r �u2−r�Vn+1−i
0 ,�v��

�108�

already derived in �23–25�. This is again the extension allowing
for intermediate boundary conditions, which can obviously be
done for Jordan chains of arbitrary length and several intermediate
transition conditions. Using �49�, �50�, and �53�–�61� for our prob-
lem, it reads
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��1
��2 = 1

− 2k̄u�ā�v̄�ā� + �h̄k̄
u�ā� − h̄N̄0
2u��ā��v̄��ā�

�
0

1

�2�0u1 + 2�̃u1��v̄dx̄ +�
0

1

2uv̄dx̄

+ �1
− 2d̄�0u�ā�v̄�ā� + h̄d̄�0
u�ā�v̄��ā�

�
0

1

�2�0u1 + 2�̃u1��v̄dx̄ +�
0

1

2uv̄dx̄

+ �1

−�
0

1

�2�0u� + 2�̃u��v̄dx̄

�
0

1

�2�0u1 + 2�̃u1��v̄dx̄ +�
0

1

2uv̄dx̄

�109�

3.3 Stability Boundaries. In Secs. 3.2.1 and 3.2.2, we de-
rived formulas for the change of simple and double eigenvalues
occurring in the spectrum of the unperturbed system, caused by
small perturbations of the parameters. For a fixed velocity �̄, the
stability region of the system in the parameter plane  ,� is given
by those areas where all eigenvalues have a negative real part. For
each simple purely imaginary eigenvalue � j of the unperturbed
problem, there is a stable region, which in the first approximation,
is a half-plane

 Re��1
j� + � Re��1

j�� � 0 ∀ j �110�

If, at a certain speed �̄, all eigenvalues are simple, then first ap-
proximation to the stable region is given by the intersection of the
half-planes �see also �17�, �23–25,32��. Depending on the param-
eters, the intersection can be a sector limited by an angle, a line
�for Re��1

1�� /Re��1
1�= ¯ =Re��1

n�� /Re��1
n�� or a point.

The necessary and sufficient conditions for a double purely
imaginary eigenvalue �0 not to move to the right-hand side of the
complex plane in the first approximation, i.e.,

Re�
Re���1
��2� + i Im���1

��2�� � 0 �111�

are Im���1
��2�=0 and Re���1

��2�	0. The condition Im���1
��2�=0

defines the line

 =
Im�2d̄�0u�ā�v̄�ā� − h̄d̄�0
u�ā�v̄��ā��

Im�2k̄u�ā�v̄�ā� − �h̄k̄
u�ā� − h̄N̄0
2u��ā��v̄��ā��
�

�112�

only half of which can be in the stable region. We are now in the
position to draw pictures of the onset of the stability regions.

In Figs. 6 and 7, we see the onset of the stability boundary
corresponding to the smallest two pairs of complex conjugate ei-
genvalues, plotted for the values of parameters


 = 0.3 d̄ = 0.5 k̄ = 1 N̄0 = 0.1 �̄ = 3� h̄ = 0.01 ā = 0.51

�113�

Below the first critical speed �̃1=6.99, we have a simple spectrum
with purely imaginary eigenvalues. Therefore, we get a region of
asymptotic stability, which for small  and �, is approximately a
sector limited by an angle.

Therefore, the simultaneous actions of dissipative and noncon-
servative positional forces can cause both asymptotic stabilization
and flutter instability. This is very important, since it occurs in the
subcritical range in squeal problems. However, in the subcritical
range, in accordance with Fig. 6, it is possible to assign a desta-
bilizing effect to nonconservative forces, as discussed in Sec. 2.4
based on �1,16,19�, and a stabilizing effect to damping forces �at
least if they cause a positive semidefinite damping operator�. This
is no longer true in the supercritical range, since the stiffness
operator becomes negative definite. Due to the angle singularity

on the stability boundary, the choice of the stabilizing combina-
tion of the forces is nontrivial, especially in this case in agreement
with �17�.

At the critical speed, we get a double zero eigenvalue with a
Jordan chain, characterizing the divergence boundary of the un-
perturbed system. At the second critical speed �̃2=9.50, the sys-
tem stabilizes again. For the perturbed problem, the stability re-
gion is again given by a sector limited by an angle.

The next interesting point in the spectrum occurs where the first
and second eigenvalues meet with nonvanishing imaginary part
��̃3=10.30�. Here, we have again a double eigenvalue with a Jor-
dan chain. Towards this point, the sector of the stable region
shrinks to a line since the stability boundaries of first and second
eigenvalue coincide at this point, as can be seen from the pertur-
bation formulas derived for the simple and the double eigenvalue
in Secs. 3.2.1 and 3.2.2. What we see around this point in Fig. 7
is, in fact, a generic singularity of the stability boundary of a
three-parameter system ��̄, , ��. These singularities have been
investigated by Arnold �30� and the one that we are observing is
the Whitney umbrella caused by a double purely imaginary eigen-
value with a Jordan block. Above the speed corresponding to the
Whitney umbrella, the unperturbed system suffers flutter instabil-
ity. Increasing the speed of the beam, the unperturbed system
stabilizes again at a critical speed �̃4=12.78, corresponding to a
double eigenvalue with a Jordan block, again yielding a Whitney
umbrella. Afterwards, the system again loses stability by diver-
gence, and additionally suffers flutter at a later stage.

The Whitney umbrella also appears in other problems, e.g., on
the stability boundaries of the Beck column with external and
internal damping �see �23,25��. It was also found in general two
degree of freedom linear gyroscopic systems with damping and
circulatory forces considered in �17�, as well as in circulatory
systems with small velocity dependent forces �33�.

We now give an expression for the Whitney umbrella. Suppose
the beam without pads, i.e., =�=0, is moving with the speed �̄

ρ̄

γ
δ

−1

−0.5

0

0.5

1

x 10
−6

−0.01 −0.005 0 0.005 0.01
γ

δ ρ̄ = 5.13

Fig. 6 Stability boundaries „subcritical range…
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= �̃ corresponding to the first double purely imaginary eigenvalue

�0= �̃0, the corresponding eigenfunction u= ũ, and associated
function u1= ũ1. Now the velocity is changed slightly by the small
parameter �. Formula �109� yields

��1
��2 = ��1

��2 = − �1
��̃0ũ� + �̃ũ�, ũ�

��̃0ũ1 + �̃ũ1 + ũ, ũ�
�114�

that is seen to be a real quantity, because �u1 ,L�u1��=
−�u1 , ��L /����u�� is real, which follows from the defining equa-
tions of the Jordan chain and integration by parts. Consequently,
in the vicinity of the first flutter boundary �̄= �̃+�= �̃+��1, the

increment 
��1
� to the unperturbed double eigenvalue �̃0 is purely

imaginary for �	0 and real otherwise. For negative �, the eigen-

value �̃0 splits into two simple purely imaginary eigenvalues ��̄0.
Perturbation of the system for arbitrary �̄ corresponding to a

simple spectrum of the unperturbed problem with the forces com-

ing from the pads yielded �̄��̄�= �̄0��̄�+�1
��̄�+��1

���̄� for the
eigenvalues meeting at �̃. The coefficients �1

��̄� and �1
���̄� were

given in �95� and �96�, depending on �̄ through the eigenvalues
and eigenfunctions of the unperturbed problem ��==0�. Substi-

tuting �̄0= �̃0�
��1
�+¯ and ū= ũ�
��1

�ũ1 into �95� and �96�
and postulating that �̄��̄�=0, we obtain an approximate equation
for the critical speed for the flutter boundary for the beam with
pads of the form

�̄ = �̃ + � A� + B

C� + D
2

�115�

where A ,B ,C, and D are constants depending only on the spectral
data of the unperturbed problem at �̄= �̃, �==0, and correspond-

ing to the double eigenvalue �̃0. Equation �115� is of the canonical
form for the Whitney umbrella; see �17,30�.

4 Conclusion
In this paper we considered a moving beam with clamped

boundary conditions in frictional contact with idealized pads. The
system’s equations of motion were derived, and the interactions
between beam and rod equations were identified. Due to the pads,
self-excited vibrations can arise in the system originating from
instabilities of the trivial solution of the beam equation. The in-
vestigated mechanism not only occurs in beams, but can also be
observed in rotating disks, providing an explanation for the phe-
nomenon of squeal, and probably also in other moving continua,
like shells. The problem was investigated using a perturbation
approach, which enabled us to calculate analytic approximations
to the stability boundaries. It was found that on the stability
boundary of the system, there are generic singularities corre-
sponding to double eigenvalues with a Jordan chain, and analytic
approximations for the splitting of eigenvalues in the vicinity of
these singularities were calculated. The model is an example for a
system losing Hamiltonian symmetry only due to perturbations in
the boundary conditions. Insights gained from the problem carry
over to other problems with moving media, and are to be investi-
gated in future research.
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On Colles’ Fracture: An
Experimental Study Involving
Structural and Material Testing
A two-stage experimental program was conducted, which was aimed at examining the
process of initiation/propagation of fracture in human radii under the conditions simu-
lating a fall onto an outstretched hand. It involved a number of destructive tests on dried
cadaver bones. The bones were first subjected to DXA as well as spiral CT measurements
to establish the density properties and the details of geometry. Subsequently, the speci-
mens were tested under controlled boundary conditions, to induce Colles’ type of frac-
ture. Following these tests, samples of cortical bone tissue were extracted at different
orientations with respect to the direction of osteons and tested in axial tension. The
results of material tests were used to verify the performance of an anisotropic fracture
criterion for the cortical tissue. It has been demonstrated that the proposed criterion can
reproduce the basic trends in the directional dependence of the tensile strength charac-
teristics. For the structural tests, a correlation was established between the geometric
characteristics of the cortex, the strength properties and the fracture load for individual
radii that were tested. It was shown that the morphological traits and/or the strength
properties alone are not adequate predictors of the fracture load of intact radii. A ratio-
nal assessment of the fracture load requires a mechanical analysis that incorporates the
key elements of the experimental program outlined here, i.e., the information on bone
geometry, material properties of the bone tissue, and the static/kinematic boundary con-
ditions. A preliminary example of a finite element analysis, for one of the radii bones
tested, has been provided. �DOI: 10.1115/1.2839902�

Introduction

An understanding of fracture mechanism in human bone is es-
sential for predicting the fracture risk associated with age and
disease. A large number of bone fractures are brittle in nature;
they initiate within the cortex and are typically associated with the
tensile stress regime. An example here is the low energy fracture
of the distal radius, referred to as Colles’ fracture. It is usually
caused by a fall onto an outstretched hand and involves fracture
through the distal metaphysic approximately 2–3 cm proximal to
the articular surface of the radius. Colles’ fracture has a dorsal
displacement of the fractured fragments, which is an indicative of
the tensile fracture mode �Hoynak et al. �1��. In mechanical terms,
the problem is similar to that of a structural element being sub-
jected to a compressive force of a significant eccentricity. The
latter typically triggers the onset of fracture in tension regime, as
the tensile strength is significantly lower than that in compression.
There is strong experimental evidence indicating that the magni-
tude of fracture load is significantly affected by the mechanical
properties of the cortical tissue as well as the geometry of the
cortex �e.g., Spadaro et al. �2�, Jordan et al. �3��.

Cortical bone is a composite material in which the basic unit is
an osteon. It consists of cylindrically shaped lamellar bone that
surrounds longitudinally oriented vascular channels �i.e., Haver-
sian canals�. In mechanical terms, this type of microstructure may
be considered as transversely isotropic, with the preferred material
axis coinciding with that of the osteon system. In order to inves-
tigate the fracture phenomenon, the material properties of the

bone tissue need to be identified. In this context, the basic ques-
tion to be dealt with is that concerning the specification of the
conditions at failure.

Despite intensive research, a reliable phenomenological frame-
work for describing the conditions at failure, in both cortical and
trabecular bones, is still lacking. Up until now, the majority of
research effort has been directed at the description of the onset of
fracture in trabecular bone. Examples here involve the works of
Tsai and Wu �4�, Cowin �5�, Pietruszczak et al. �6�. The primary
difficulty in formulating a general fracture criterion is the need for
a specific tensorial measure of trabecular architecture and its cor-
relation with mechanical properties. In the case of cortical bone,
the most common approaches to defining the notion of failure
involve implementation of strain-based criteria that are largely
empirical. Such criteria identify the onset of fracture with critical
values of principal strain magnitudes �Niebur et al. �7�� or the
strain energy density �Ulrich et al. �8�, Pistoia et al. �9�, Pistoia et
al. �10��. Again, there is a need for a more general approach,
which is rigorous and experimentally verifiable.

In this work, a comprehensive experimental program has been
carried out. It consisted of two basic stages. The first one involved
testing of a number of cadaver radii under the conditions simulat-
ing Colles’ fracture. The second stage was concerned with mate-
rial tests on samples of cortical tissue that were extracted from the
fractured radii. All tests, both structural and material, were carried
out on dry bones and the limitations of this procedure are ad-
dressed in the Discussion section. The results of material tests
were examined in the context of identification/verification of a
simple macroscopic fracture criterion that incorporates the aniso-
tropy of strength properties. In addition, the results for the whole
radii were employed to study a correlation between the geometric
characteristics of the cortex, its strength properties, and the frac-
ture load.

It needs to be emphasized that the current experimental pro-
gram was structured in such a way as to provide a benchmark for
assessing the predictive abilities of numerical models incorporat-
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ing linear/nonlinear finite element formulations. The structural
tests, together with CT measurements, provided comprehensive
information on bone geometry, material properties of the bone
tissue, and the strength characteristics of whole radii under well-
defined static/kinematic constraints. This is a general methodol-
ogy that needs to be followed in order to enable a reliable me-
chanical analysis of the fracture process. In order to illustrate this
aspect, some preliminary results of a finite element analysis of one
of the radii tested have been provided. The analysis is restricted to
the elastic range and incorporates the actual bone geometry and
the mechanical properties established from the material tests. The
focus here is on examining the fracture mode, the latter being
assessed based on the verification of the employed anisotropic
fracture criterion. In the second part of this work, which is cur-
rently in preparation, a more extensive numerical study of the
experimental results reported here will be presented. The analysis
will employ a nonlinear framework that incorporates the descrip-
tion of localized deformation associated with initiation and propa-
gation of fracture.

Methodology

A Tensile Fracture Criterion for Cortical Bone. Let us start
with the notion of fracture criterion that is central to the main
theme of this work. Cortical bone may be considered as a trans-
versely isotropic material in which the preferred material axes
coincide with the direction of the osteons �see Ashman et al. �11��.
Consequently, the strength properties depend, in general, on the
orientation of material axes in relation to the direction of loading.
In this study, the considerations are restricted to the tensile regime
and the specific form of the fracture criterion is similar to that
employed by Pietruszczak et al. �12� in the context of numerical
analysis of distal radius fracture. The formulation is based on the
critical plane approach, whereby the conditions at failure are de-
fined in terms of traction components acting on a physical plane,
and the representation employs a set of functions specifying the
spatial variation of strength parameters. The approach consists of
identifying such an orientation of the critical or localization plane,
for which the failure function reaches a maximum �Pietruszczak
and Mroz �13��.

In the tension regime, the failure is said to occur when the
normal component of the traction vector, acting on a plane with
unit normal ni, reaches a critical value. Thus, the failure function
may be defined as

F = tn�ni� − c�ni� tn = �ijninj c = ĉ�1 + �ijninj� �1�

Here, tn is the normal stress along ni and c is the strength param-
eter, which is assumed to be orientation dependent. The bias in the
distribution of c is defined by employing a symmetric traceless
tensor �ij whose eigenvalues coincide with the principal material
axes, while ĉ is the average value of c.

The orientation of the fracture/localization plane can be deter-
mined by maximizing the function F with respect to ni. Thus, the
conditions at failure are defined as

max
ni

F = max
ni

�tn�ni� − c�ni�� = 0 �2�

Introducing a Lagrange multiplier �, the corresponding Lagrang-
ian function becomes

G = �kjnknj − ĉ�1 + �kjnknj� − ��njnj − 1� �3�

The stationary conditions with respect to ni take the form

�G

�ni
= 2��ijnj − ĉ�ijnj� − 2��ijnj = 0 �4�

from which

�Bij − ��ij�nj = 0 Bij = �ij − ĉ�ij �5�
Equation �5� defines an eigenvalue problem that can be solved to
specify the direction cosines ni. It is evident that for �ij =0, there

is c= ĉ=const. In this case, �’s are the eigenvalues of �ij, so that
the direction of the localization plane is normal to that of the
maximum tensile stress.

Note that, according to Eq. �1�, the failure function F can be
defined in terms of Cartesian components of both operators
�ij ,�ij as

F = ��ij − ĉ�ij�ninj − ĉ �6�
Referring the above equation to, for example, the principal stress
system, �I=�11,�II=�22,�III=�33, one can express the criterion
�2� as

max F = ��I − ĉ�11�n̂1
2 + ��II − ĉ�22�n̂2

2 + ��III − ĉ�33�n̂3
2

− 2ĉ��12n̂1n̂2 − �13n̂1n̂3 − �23n̂2n̂3� = 0 �7�

where n̂i= �n̂1 , n̂2 , n̂3� defines the components of the unit vector
normal to the localization plane, Eq. �5�.

Unfortunately, an analytical expression for n̂i is not straightfor-
wardly available, so that an explicit form of Eq. �7� is not viable.
This is in contrast to other criteria that are expressed directly in
terms of stress components referred to the principal material sys-
tem. An example here is the Tsai–Wu criterion, which employs a
quadratic representation in terms of stress and requires, in general,
12 independent material constants �Tsai and Wu �4��. The primary
problem with such criteria, in addition to excessive number of
constants and restrictive abilities in terms of describing the direc-
tional variation of strength properties, is the notion of frame in-
difference. Indeed, for a transversely isotropic material, such as
cortical bone tissue, the value of failure function should not be
affected by referring the problem to a coordinate system obtained
through rotation about the preferred axis. This, however, is not
enforced for the class of criteria of Tsai–Wu type.

The identification of material parameters appearing in Eq. �1�
entails performing a series of direct tension tests on samples ex-
tracted at different orientations relative to the direction of the
osteons. Figure 1 shows a schematic geometry of the sample.
Here, � defines the orientation of osteons, while � specifies the
direction of the localization/failure plane, Referring to this figure,
consider a sample subjected to axial tension along the x1 axis. For
loading in the direction of osteons ��=0 deg�, or in the direction

Fig. 1 Schematic representation of cortical bone sample; xi -
material coordinate system; x̄i - global coordinate system.
„Note: � defines the inclination of the critical plane with respect
to horizontal axis, while � specifies the orientation of osteons…
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perpendicular to it ��=90 deg�, the principal material directions
coincide with the eigenvectors of the stress tensor. Consequently,
for both these cases the localization plane is orthogonal to � �i.e.,
�=0�. Noting that �ij is a traceless operator and �2=�3 �trans-
versely isotropic material�, there is �1=−2�3. Denoting now by
c0 ,c�/2 the ultimate strengths at �=0 deg and �=90 deg, respec-
tively, one obtains

c = ĉ�1 + �1� = c0 c = ĉ�1 + �3� = ĉ�1 −
1

2
�1� = c�/2 �8�

so that

�1 =
2�c0 − c�/2�
c0 + 2c�/2

ĉ =
1

3
�c0 + 2c�/2� �9�

Given now the values of the material constants, the spatial dis-
tribution of c can be defined by invoking the representation �2�.
For the case as stipulated in Fig. 1, the following relations are
obtained:

F = � cos2 � − ĉ	1 +
1

2
�1�3 cos2�� − �� − 1�
 = 0

�10�
dF

d�
= − � sin 2� − 3ĉ�1 sin 2�� − �� = 0

which, for a fixed value of �, provides a set of two equations for
two unknowns, i.e., � and �=c.

Finally, it is noted that the criterion �1� can be extended to
compression regime by invoking, for example, a Coulomb-type of
function on the localization plane. In this case, the problem may
be formulated as

F = max�F1,F2� F1 = ts − ��ni�tn − 	�ni� F2 = tn − c�ni�
�11�

where

��ni� = �̂�1 + �ij
�ninj� 	�ni� = 	̂�1 + �ij

	ninj� �12�

Here, ts is the shear stress on the plane with the unit normal ni and
the operators �ij

� ,�ij
	 have the definition that is analogous to that

employed in Eq. �1�.

Mechanical Testing. In order to identify/verify the suitability
of the framework outlined above, an experimental program has
been undertaken. In this program, a number of cortical bone
samples were extracted from dry cadaver forearms at different
orientations ��=0 deg, 45 deg, and 90 deg� with respect to the
preferred material orientation �i.e., direction of osteons�. The iden-
tification was restricted to the tensile regime, i.e., the samples
were tested in axial tension in order to specify the function c�ni�,
Eq. �1�.

As mentioned earlier, this specific experimental program was
part of a broader investigation that was aimed at examining the
process of initiation/propagation of fracture in human radii under
the conditions simulating a fall onto an outstretched hand. The
latter involved a number of destructive tests on whole cadaver
bones. The bones were first subjected to DXA as well as spiral CT
measurements. Subsequently, the specimens were tested under
controlled boundary conditions, to induce Colles’ type of fracture.
Following these tests, small samples of cortical bone tissue were
extracted and tested in direct tension in order to define the basic
material parameters.

The specimens for both the structural and material testings were
taken from a set of 11 dried cadaver radius bones obtained from
multiple donors �gender and age were unspecified�. Prior to test-
ing, the radii were measured, weighed, and scanned using both
DXA and GE CTI helical scanner. In the latter case, the digital
data were acquired through a stack of images taken along longi-
tudinal axis of radii with 1 mm spacing, Fig. 2. The results were

then used to obtain the details of geometry as well as the infor-
mation on the cortical tissue density, which was later correlated
with the tensile strength. In addition, relations between various
geometric entities �i.e., minimum cortical thickness and cortical
cross-section area�, the clinical measurements obtained from DXA
protocol and the fracture load were examined.

The first phase of experiments involved structural testing of
dried radius bones in a setup simulating the condition of a fall
onto an outstretched hand. The specimens were trimmed at 60–
70% of the length in order to reduce the bending moment at the
support. The standard experimental setup as used by other inves-
tigators �see Augat et al. �14�, Pistoia et al. �9�, Muller et al. �15��,
which employed embedment at both trimmed and distal ends, has
been modified in order to ensure a more accurate load transfer
�see Fig. 3�. In particular, the circular embedment at the distal end
was replaced by a polymer filling applied to the articular surface
of the radius. The mold had a smooth upper surface with volar tilt
varying from 8 deg to 12 deg �Fig. 3�a�� and radial tilt within the
range of 0–6 deg �Fig. 3�b��. The proximal �trimmed� end was
embedded in the same polymer placed in a polyvinyl chloride
�PVC� ring of 25 mm inner diameter. The load was applied
through the steel plate placed at the top of the mold filling the
articular surface. All tests were conducted by employing a con-
stant loading rate of 0.1 mm /min. This rate corresponds to static
range �McElhaney �16�� and it is substantially lower than that
simulating a dynamic impact ��100 mm /s; Muller et al. �15��.
The choice here was dictated by the overall objective of this study,
i.e., to provide simple benchmark problems for validation of static

Fig. 2 CT scans of two isolated radii together with vials con-
taining calibration solutions for the derivation of Hounsfield
number

Fig. 3 Experimental setup for testing Colles’ fracture; two dif-
ferent samples shown in „a… lateral medial view „b… palmer view.
Load cell at the top of the figure.
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linear/nonlinear finite element simulations. Note that the dynamic
analysis is quite ambiguous and difficult to verify, as it employs
more internal variables and requires sophisticated material tests
for assessing the sensitivity of the tissue properties to the applied
loading rate.

The testing machine was equipped with internal force and de-
formation transducers. Both transducers were calibrated before the
testing, and the force-deformation curves were recorded. In addi-
tion, the polymer that was used for embedment �PMMA, Bos-
worth Fastray� was itself tested in axial compression in order to
determine the elastic and ultimate strength properties.

In the second phase of the experimental program, the samples
of cortical bone were extracted from the middle section of the
individual radii, i.e., the region where the cortical shell was the
thickest. The bone tissue was carefully milled to produce rectan-
gular specimens with the gauge length of 10–15 mm, the width of
5 mm, and the thickness of 1.5 mm. The samples were extracted
at different orientations of �=0 deg, 45 deg, and 90 deg with re-
spect to the longitudinal axis of the radius. For samples taken
along the longitudinal direction, it was possible to produce speci-
mens with enlarged ends that could be held safely by the grips in
the testing machine, as shown in Fig. 4. The samples taken out at
45 deg and 90 deg �transverse direction� had a uniform width, as
shown in Fig. 5�b�.

Each sample was individually fabricated. For most longitudinal
samples, miniature, three-element, 45 deg rectangular stacked ro-
sette strain gauges from Micro-Measurements �gauge designation:
WA-06-030WR-120� were glued to the middle of the specimens,
as shown in Figs. 4 and 5�a�. The longitudinal and the transverse
gauges were each connected in quarter bridge configurations,
while the 45 deg gauge was not employed. This configuration
allowed to obtain strain measurements for identification of the
elasticity moduli and the Poisson’s ratios of the cortical bone in
the longitudinal directions of the tissue. Note that most samples

extracted in transverse direction were too small to be outfitted
with strain gauges in the same manner. Thus, in this case, the
elastic moduli were estimated directly from transducer readings.

The samples were mounted in the grips of a 5 kN Instron 1011
testing machine. All specimens were subjected to uniaxial tension
at a constant displacement rate of 0.5 mm /min �i.e., strain rate of
approximately 0.001 /s�, which again is representative of static
conditions �McElhaney �16��. The testing machine was equipped
with internal force and deformation transducers. Both transducers
were calibrated before the testing, and the force-deformation
curves were simultaneously recorded on the computer screen and
by a strip-chart recorder for later analyses. Additional external
force and deformation transducer were employed and their signals
were recorded along with the responses from the strain gauges.

Data Analysis. The first aspect of the analysis involved the
identification/verification of the proposed fracture criterion �1�
and �2�. Extensive numerical simulations were performed, for a
number of individual specimens, to specify the tensile strength
distribution and the results were compared with the experimental
data. In addition, a simple regression analysis was performed in
order to determine which clinical measurement �i.e., spiral CT or
DXA� is the best predictor of the tensile strength of cortical tissue.
The accuracy of the proposed criterion was assessed by examining
the relation between the values of ultimate strength predicted by
the model and those obtained experimentally.

For the tests on whole radii, a regression analysis was per-
formed in order to determine the relation between the geometric/
material characteristics of individual radii and the fracture load.
Variables of three different types were employed, i.e., DXA mea-
surements of bone mineral density at distal location, geometric
characteristics of cortical shell �i.e. minimum thickness and cross-
sectional area� at different distal locations, and strength properties
of cortical tissue. A stepwise regression was performed to estab-
lish if the combination of chosen variables predicts fracture load
better than a single variable.

Experimental Results
The main results of structural tests on the whole radii are pro-

vided in Table 1. The table gives the information about the mag-
nitude of fracture load together with classification of the type of
fracture according to the Comprehensive Classification of Frac-
ture of Long Bones �Fernandez et al. �17��. In addition, the clinical
measurements of areal bone mineral density �BMD� �g /cm2� and
bone mineral content �BMC� �g� are also provided. The areal
BMD was determined by DXA for the projection areas of 1 cm at
two anatomic locations, i.e., at the midshaft area and 1 /3 length
from the distal end of radius, respectively. Figure 6 shows a typi-
cal example of experimentally produced Colles’ fracture �Bone 5�,
while the corresponding load-displacement curve is given in
Fig. 7.

The key information on the results of direct tension tests on
cortical bone specimens is provided in Table 2. Note that the main
focus in this work is on evaluation of directional distribution of
tensile strength. However, some supplementary information, i.e.,
that on elastic properties as well as cortBMD �g /cm3� measure-
ments �spiral CT�, has also been provided. The values of cort-
BMD at the midshaft are averages from the data collected over
1 cm length along the longitudinal direction, whereas the values at
1 /3 distal end were derived from a single image that included
only the cortical tissue. Bones marked as 6 and 10 were not sub-
jected to spiral CT imaging.

Given the restrictions imposed by the size and the geometry of
individual radii, it was not always possible to extract samples at
all desired orientations. Thus, a complete set of specimens
��=0 deg, 45 deg and 90 deg� was obtained only for Bones 4, 5,
9, and 11. The tensile strength was determined for all available
samples; the values given in Table 2 are the averages of two to
three tests that were carried out for each specific orientation. Note

Fig. 4 Experimental setup for material tests „longitudinal
sample, �=0 deg…

Fig. 5 Orientation of fracture plane; „a… sample tested in lon-
gitudinal direction; „b… samples tested at 90 deg and 45 deg
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that the information gathered on elastic parameters is only par-
tially complete. For specimens tested in longitudinal direction,
�=0 deg, the elastic modulus E1 and Poisson’s ratio 
13 were
determined from the strain gauge readings. For transverse
samples, most values of Young’s moduli were estimated based on
data collected from the transducers �i.e., with accuracy within the
range of �20%�. For inclined specimens, i.e., at �=45 deg, no

values are provided as the measurements are not in the principal
material system. Again, all values quoted are the averages from
two to three tests.

Figure 8 shows the stress-strain curves obtained for samples
extracted in the longitudinal direction ��=0 deg� from Bones 5
and 11. It is evident that the behavior of the tissue is typical of an
elastic-brittle material. After reaching the critical value, the load is
drastically reduced to zero due to the abrupt fracture. In samples
tested in principal material directions ��=0 deg and �=90 deg�,
the fracture plane is orthogonal to the direction of loading. In
inclined samples, the failure plane significantly deviates from the
horizontal, as shown in Fig. 5�b�.

Given the results of all material tests, as described above, let us
focus now on one of the primary objectives of this study, i.e., the

Table 1 Main results of structural tests on whole radii „the experimental accuracy ±45 N…

Bone
Length
�cm�

Dry weight
�g�

BMC
�g�

BMD
midshaft
�g /cm2�

BMD 1 /3
distal
length

�g /cm2� Fracture type

Fracture
load
�N�

1 23.3 22.01 13.63 0.55 0.39 Colles’:a 23-A2.2 2090
2 23.9 29.79 19.48 0.62 0.49 Colles’:a 23-A2.2 1990
3 22.8 29.55 18.73 0.62 0.41 Colles’:a 23-A2.2 2540
4 24.6 46.24 30.36 0.82 0.55 Multifragmental shaft fracture 2240
5 24.4 39.87 25.84 0.79 0.61 Colles’:a 23-A2.2 3720
6 21.7 22.83 14.22 0.68 0.43 Colles’:a 23-A2.2 1180
7 25.2 41.04 26.28 0.66 0.54 Extra-articular: 23-A3.3 2990
8 23.8 40.91 32.94 0.83 0.6 Colles’:a 23-A2.2 2580
9 23 45.19 28.77 0.83 0.58 Extra-articular: 23-A3.2 4530

10 26.8 32.52 20.53 0.57 0.36 Complete articular: 23-C2.2 2170
11 25 35.22 22.67 0.61 0.46 Complete articular: 23-C3.3 2360

aExtra-articular fracture of the radius simple and impacted with dorsal tilt.

Fig. 6 Failure mode for Bone 5; „a… anterior posterior view; „b…
posterior anterior view

Fig. 7 Load-displacement characteristic for Bone 5

Table 2 Main results of material tests „cortical bone
specimens….

Bone
no.

Length
�cm�

cortBMD
�g /cm3�

Sample
orientationa

�deg� c �MPa�
E1�3�

�GPa�b �13�31�
b

1 /3
length Midshaft

2 23.9 1.989 1.984 0 156.5 24.7 0.36
3 22.8 1.966 1.967 0 171.5 21.1 0.36

90 14.4 �14 c

4 24.6 1.962 1.941 0 129.9 32.4 0.45
45 37.4 d d

90 25.6 �20 c

5 24.4 1.978 1.981 0 174.9 27.5 0.29
45 34.6 d d

90 22.4 �19 c

6 21.7 c c 0 186.7 �29 c

9 22.9 1.932 1.941 0 134.9 27.9 0.35
45 21.2 d d

90 15.4 19.6 0.27

11 25 1.988 1.964 0 152.9 25.9 0.37
45 36.4 d d

90 15.6 �16 c

Note: all results are averages from two to three samples. The term � means esti-
mated based on the data from transducers.
a0 deg and 90 deg correspond to longitudinal and transverse directions, respectively.
bIndices 1 and 3 refer to longitudinal and transverse directions, respectively.
cData not available.
dNot applicable �measurements not in the principal material system�.
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validation of the functional form of the fracture criterion, Eqs. �1�
and �2�. Figures 9�a�, 10�a�, and 11�a� present the spatial distri-
bution of the tensile strength, c, as a function of sample orienta-
tion, �. The variation of strength is supplemented by the evolution
of the orientation of fracture plane, as shown in Figs. 9�b�, 10�b�,
and 11�b�. The results correspond to specimens extracted from a
number of different radii �in this case, 5, 9, and 11�. For the
numerical simulations, the material parameters ĉ, �1 were evalu-
ated from Eq. �7� by employing the values of tensile strengths in
longitudinal and transverse directions, as provided in Table 2.
Given both ĉ and �1, the spatial distribution of strength and the
corresponding orientation of failure plane were determined by
solving the set of simultaneous equations �8� for a number of
discrete orientations �. The graphs in Figs. 9–11 give both the
numerical solution �solid line� as well as experimental data �black
dots�. The experimental values of strength are the ones obtained
from tests on samples extracted at �=0 deg, 45 deg, and 90 deg.
Concerning the orientation of the fracture plane, for all longitudi-
nal and transverse samples tested, the direction of tension was
along one of the principal material axes and, in this case, the
fracture plane always remained perpendicular to the loading direc-
tion, i.e., �=0. For samples extracted at �=45 deg, the fracture

Fig. 8 Typical stress-strain curves representative of tensile
tests for cortical tissue

Fig. 9 Numerical simulation of direct tension test; Bone 5, ĉ=74.86 MPa, �1=1.400.
„a… Distribution of axial tensile strength; „b… orientation of fracture plane.

Fig. 10 Numerical simulation of direct tension test; Bone 9, ĉ=55.21 MPa, �1=1.444. „a… Distribution of
axial tensile strength; „b… orientation of fracture plane
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plane deviated substantially from the direction of the normal to
the applied load. All the measured orientations are shown as black
dots in Figs. 9�b�, 10�b�, and 11�b�.

Figure 12 shows the relation between the tensile strength pre-
dicted by the model versus the available experimental data. In this
case, all data acquired from specimens extracted at 45 deg have
been pooled, since the remaining values, i.e., those for vertical
and horizontal samples, were used to identify the parameters em-
ployed in the fracture criterion. The dashed line corresponds to a
perfect agreement, i.e., the slope equal to 1. The solid line repre-
sents the fitted regression line; the regression coefficient is 0.912
�R2=0.68�. Note that the regression line shown here was forced
through zero; the natural regression produced insignificantly small
intercept �y=0.9111x+0.0417; R2=0.68�. Finally, Fig. 13 shows
the correlation between the tensile strength in longitudinal direc-
tion, as predicted by the model, and the volumetric BMD of the
cortical tissue. The correlation coefficient is 0.73.

The results of structural tests, as given in Table 1, were exam-
ined in the context of establishing a correlation between the geo-
metric characteristics of the cortex, the tensile strength of the
cortical tissue and the fracture load for individual radii that were
tested. For this purpose, two distinct geometric measures were
introduced, viz., minimum thickness of cortical shell �cortTmin

Fig. 11 Numerical simulation of direct tension test; Bone 11, c0=64.28 MPa, �1=1.379. „a… Distribution
of axial tensile strength, „b… orientation of fracture plane, and „c… distribution of axial tensile strength -
polar coordinate representation

Fig. 12 Correlation between the tensile strength predicted by
the model and the experimental results „excludes samples that
were used for the calibration of the model…. Note: the dashed
line is a reference line illustrating perfect agreement; the solid
line is the actual regression line forced through zero.
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�mm�� and cross-section area of cortical shell �cortCSA �mm2��,
both obtained from spiral CT data. These new measures, in addi-
tion to standard DXA parameters �BMD and BMC�, were in-
cluded as independent variables.

Figure 14 shows the correlations between the fracture load and
BMD �at 1 /3 distal end� as well as cortTmin �at 6% distal end, i.e.,
just below the articular surface�. The P value for both cases is less
than 0.000001; BMD model explains 40% �R2=0.40� of the vari-
ability of the data, whereas for cortTmin there is R2=0.39. Note
that in both cases the regression line was again forced through
zero in order to preserve the physical meaning of the investigated
correlation. The complete results of linear regression employing
several different measures are given in Table 3. In general, the
clinical measurements �BMD and BMC� are weak predictors of
fracture load �R20.50�. Also, the tensile strength in dominant
direction is a very weak predictor �R2=0.18�.

The geometric measures of cortex �cortTmin, cortCSA� at ultra-
distal 6% and distal 15% ends do not approximate the failure load
adequately. Combination of two independent geometric and DXA
variables results in an improvement in coefficient of determina-
tion. At 15% distal length, the combination of BMD 1 /3 with
cortTmin and BMD with cortCSA gives R2=0.49 and R2=0.59,
respectively. At 6% ultradistal location, combining BMD 1 /3 with
cortTmin allows to explain 53% of variability of the fracture load.

Preliminary Numerical Simulations
A reliable mechanical analysis of the fracture process requires

the information on the bone geometry, the kinematic/static bound-
ary conditions as well as the key material properties. Thus, all
stages of the experimental program, as described in this work, are
interrelated and are essential to provide the required input param-
eters. In order to illustrate this aspect, preliminary finite element
�FE� simulations have been conducted for the radius Bone 5. The
actual geometry was retrieved from CT scans and incorporated in
a FE model, whereby the entire analyzed domain was discretized
using eight-noded solid elements. The preliminary study carried
out here involved an elastic analysis for a transversely isotropic
material, which was followed by a verification of the anisotropic
fracture criterion, viz., Eq. �1�. The key material parameters em-
ployed, i.e., elastic constants and the strength parameters, are
listed in Table 2.

The preliminary results, which focus on the prediction of the
failure mode, are shown in Fig. 15. The figure on the right pre-
sents the experimental failure mechanism for the radius Bone 5.
At the same time, the figure on the left shows the distribution of
the failure function F, Eq. �1�, obtained for the loading environ-
ment analogous to that in the full scale test. The darkened zone
shows the region that experiences F→0; the latter being indica-
tive of the onset of tensile fracture. Note that the location of
fracture is consistent with experimental observation and the re-
sults clearly confirm that the fracture commences in the tensile
regime.

As mentioned earlier, a more comprehensive numerical analysis

Fig. 13 Correlation between the tensile strength in longitudi-
nal direction, as predicted by the model, and volumetric BMD of
cortical tissue

Fig. 14 Correlation between the ultimate load and clinical/geometric measurements

Table 3 Results of linear regression analysis

Location
�% of distal length� Parameters R2 P

BMC 0.32 0.00001
BMD 1 /3 0.40 0.00001
c �max. tensile strength� 0.18 0.001

6 % CortTmin 0.39 0.00001
CortTmin�BMD 1 /3 0.53 0.00001

15% CortTmin 0.22 0.00001
CortTmin�BMD 1 /3 0.49 0.00001

15% cortCSA 0.21 0
cortCSA�BMD 1 /3 0.59 0.00001

�Note: significance level �=0.05; for p� regression is statistically significant�
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of the experimental work reported here will be presented sepa-
rately. The analysis will employ a nonlinear framework that incor-
porates the description of localized deformation associated with
initiation and propagation of fracture.

Discussion
In this paper, the results of a two-stage experimental program

have been presented. The program involved a series of structural
tests on the whole radii accompanied by material tests on samples
of cortical tissue, the latter extracted from the fractured bones.
The program was designed in such a way as to supply the infor-
mation on bone geometry, material properties, and the kinematic/
static boundary conditions. Such a methodology is essential for
providing a comprehensive set of data that is required for conduct-
ing a quantitative numerical analysis of the bone fracture process.
At this stage, some preliminary simulations were carried out in
order to illustrate the methodology itself. In addition, the experi-
mental results presented here were analyzed in two different con-
texts. The results of material tests were employed to examine the
predictive abilities of a simple macroscopic criterion for describ-
ing the onset of brittle fracture within the human cortical bone
tissue. For the structural tests, a correlation between the magni-
tude of fracture load, associated with Colles’ fracture, and the
geometric/strength properties of the cortex was investigated.

One of the main limitations of this work is the fact that the tests
were all conducted on dry bone tissues. The experimental evi-
dence indicates that the presence of fluid results in increased duc-
tility and the reduction in ultimate tensile strength �Evans �18�,
Currey �19��. In general, the difference in mechanical properties
of dry and wet tissues stems from the chemical interaction, which
affects the mineral content, as well as from generation of the
excess of pore pressure that affects the response of solid matrix.
Given that the effect of drying and rewetting on the mechanical
properties of cortical bone is relatively small �Currey �19��, it
appears that the latter, i.e., solid-fluid interaction, may be a domi-
nant factor. In this context, the properties of the dry tissue are of a
significant importance in assessing the overall macroscopic re-
sponse in the presence of fluid.

Another related aspect is that of the influence of the loading
rate. As mentioned earlier, the tests reported here were conducted
in static range, as the primary objective was to provide simple
benchmark problems for the purpose of numerical validation.
Thus, both rates employed �i.e., 0.5 mm /min for material testing
and 0.1 mm/min for structural testing� were significantly lower
than the impact rate ��100 mm /s; Muller et al. �15��. It is well
known that at high strain rates, which are representative of an
impact, both the stiffness and strength increase �Currey �20��. It is
interesting to note though that under high loading rates the me-
chanical characteristics of the wet cortical bone become similar to
those of dry bones tested under quasistatic regime �McElhaney
�16��. Namely, the wet tissue becomes more brittle and the in-

crease in strength at amplified strain rates compensates for the loss
associated with the drying process. In this context, the static tests
on dry bones may be quite useful in assessing the basic trends
under the clinically relevant state.

In what follows, the main observations regarding the behavior
at both the material and the structural level are addressed in detail.

Mechanical Properties of Cortical Tissue. In cortical bone,
the orientation of principal material axes can be estimated a priori
based on the geometry of the cortical shell. Compact bone is
composed of osteons, which are the main structural units. Every
osteon has a number of lamellae, which contain collagen fibers
laid in an ordered array. The resistance to tension is primarily due
to the presence of those fibers. The average orientation of osteons
is parallel to the axis of long bones �Martin et al. �21��. Thus, the
preferred material orientation is largely defined by the geometry
of the whole bone. The microstructure of the cortical tissue may
be idealized as transversely isotropic, so that the remaining mate-
rial directions are confined to the plane orthogonal to the direction
of osteons. This well organized structure is quite different from
that of the trabecular tissue. In the latter case, the specification of
the local material triad entails the use of some specific measures
of material microstructure �e.g., Odgaard �22�, Smit et al. �23�,
Inglis and Pietruszczak �24��, which significantly complicates the
mathematical formulation of the problem.

The typical trends in the mechanical response, as presented in
Figs. 9–11, are consistent with those reported by other investiga-
tors �see Guo et al. �25�, Reilly and Burstein �26��. In the tension
regime, the dry cortical tissue is an elastic-brittle material. There
is no evidence of ductility and the onset of fracture occurs at the
axial strain of less than 1% �Jepsen et al. �27��. The values of
Poisson’s ratio, as recorded in the experiments here, are within the
range of 0.29–0.45. This is consistent with the results reported by
Reilly and Burstein �26�, which quote the values within a similar
interval �i.e., 0.34–0.47 in transverse plane and 0.29–0.5 in the
longitudinal direction�. Young’s moduli along the preferred orien-
tation are within the range of 20–32 GPa, while the transverse
modulus reaches 19.6 GPa. The values reported in the literature
are mostly for a wet cortical tissue and therefore are generally
lower. For example, Reilly and Burstein �26� quote the values to
be around 10–14 and 16–18 GPa in transversal and longitudinal
directions, respectively. Turner et al. �28� determined the elastic
properties from a series of nanoindentation tests and obtained val-
ues that are substantially higher, i.e., 16.6�0.3 and
23.5�0.2 GPa. Guo et al. �25� provided an overview of the esti-
mates of elastic moduli based on nanoindentation experiments
conducted on wet, dry, and embedded samples. As quoted by the
authors, for a dry cortical tissue the values are in the range of
25–34 GPa with a high standard deviation. The latter interval is
consistent with the range of values reported in the present work.

The tensile strength, as reported here, was within the range of
135–187 MPa for testing along the preferred orientation, and
14–26 MPa in transverse direction. Guo et al. �25� quote the val-
ues for the wet cortical tissue to be 135�16 and 53�11 MPa; a
similar range of tensile strengths is recorded in the work of Reilly
and Burstein �26�. Thus, the values obtained here are, in general,
higher for testing in longitudinal direction and lower in transverse
direction. This again stems from the fact that a dry tissue was
being tested, in which case the bonding between the fibers is
reduced leading to a lower strength in transverse direction.

As mentioned earlier, the main focus of the material testing was
the validation of a simple fracture criterion �1�. The key results are
those presented in Figs. 9–11 and summarized in Figs. 12 and 13.
Figure 12 gives the plot of experimental values of strength against
those predicted by the model. Note, again, that only the values
corresponding to samples extracted at 45 deg have been included
here, as these were not directly employed in the calibration of the
model parameters. The slope of the regression line is close to
unity, indicating a fairly good agreement. It is recognized that the

Fig. 15 Failure mode for the radius Bone 5: right: experimen-
tal result; left: FE simulation; distribution of failure function
„darkened zone shows the region where the onset of tensile
fracture occurs…
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number of tests performed is limited. At the same time, however,
the level of accuracy is very encouraging and provides a consid-
erable degree of confidence in the predictive abilities of the
model. The question on whether the distribution of strength can be
described sufficiently accurately by employing a linear depen-
dence on the dyadic product �ijninj is still open. As noted above,
the predictions for samples tested at 45 deg are quite accurate.
Also, the overall trend in the distribution of strength as reported
by Reilly and Burstein �26�, who took measurements along four
different orientations, are fairly similar to those depicted in Figs.
9–11. In general, however, one or two additional testing angles
seem to be necessary to assess the accuracy.

Finally, it is evident from Fig. 13 that the value of tensile
strength is very sensitive to the variations in tissue density. In this
work, a relatively good correlation has been obtained between
volumetric BMD of the cortical tissue and the predicted tensile
strength �R2=0.73, p0.005�, which is significant in terms of the
possibility of assessing the values of strength parameters by
means of noninvasive measurements. In general, the existing evi-
dence is not conclusive in this respect. While some authors report
a poor correlation between the mechanical properties and CT den-
sity measurements �e.g., Snyder et al. �29��, others give the evi-
dence of a moderate to good correlation. The examples of the
latter include the work of Rho et al. �30�, who found a good
correlation between the apparent density and the elastic modulus
�R2=0.79�, and Wachter et al. �31�, who found a moderate corre-
lation between the yield stress in compression and BMD �R2

=0.72�.

Structural Tests on Whole Radii. The range of magnitudes of
the fracture load, as reported in Table 1, remains consistent with
the existing experimental evidence for both the dynamic �Augat et
al. �14�, Muller et al. �15�� and quasistatic �Spadaro et al. �2��
loading conditions. The load-displacement characteristics �Fig. 7�
confirm the brittle nature of Colles’ fracture. The dominating lin-
ear part is followed by an unstable branch associated with local-
ized deformation.

It is evident that the clinical DXA measurements and/or the
strength properties alone cannot be adequately correlated with the
fracture load. Also, a weak correlation is found by employing
various geometric measures of cortex at locations close to the
distal end. By combining the geometric and strength properties,
the predictive abilities improve; in general, however, they still
remain unsatisfactory. It is therefore evident that the assessment of
fracture load is a strictly mechanical problem and as such requires
a proper numerical analysis. The value of ultimate load is affected
by mechanical properties of the bone tissue, the geometry of the
whole radius, and the boundary conditions.
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Exact Response of a Translating
String With Arbitrarily Varying
Length Under General Excitation
The exact response of a translating string with constant tension and arbitrarily varying
length is determined under general initial conditions and external excitation. The gov-
erning equation is transformed to a standard hyperbolic equation using characteristic
transformation. The domain of interest for the transformed equation is divided into
groups of subdomains according to the properties of wave propagation. d’Alembert’s
solution for any point in the zeroth subdomain group is obtained by using the initial
conditions. The solution is extended to the whole domain of interest by using the bound-
ary conditions, and a recursive mapping is found for the solution in the second and
higher groups of subdomains. The least upper bound of the displacement of the freely
vibrating string is obtained for an arbitrary movement profile. The forced response of the
string with nonhomogeneous boundary conditions is obtained using a transformation
method and the direct wave method. A new method is used to derive the rate of change of
the vibratory energy of the translating string from the system viewpoint. Three different
approaches are used to derive and interpret the rate of change of the vibratory energy of
the string within a control volume, and the energy growth mechanism of the string during
retraction is elucidated. The solution methods are applied to a moving elevator cable
with variable length. An interesting parametric instability phenomenon in a translating
string with sinusoidally varying length is discovered. �DOI: 10.1115/1.2839903�
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transformation, boundary excitation, rate of change of energy, unstable shortening string
behavior, parametric instability, exact solution

1 Introduction
A translating string with variable length is a prototypical model

of translating media with variable length. Translating media with
variable length can model such systems as elevator cables, crane
and mine hoists, satellite tethers, robotic arms through prismatic
joints, flexible appendages, and paper sheets through copiers. The
dynamics of translating media has typically been studied for cases
with constant span length and transport velocity �1,2�. Some
classes of time-varying translating media, including translating
media with variable length and/or velocity, have been studied re-
cently �3�. A recent review of research on the transverse vibration
of translating strings is given in Chen �4�.

The vibration of translating strings is governed by hyperbolic
partial differential equations. Using Hamilton’s principle,
Miranker �5� derived the linear equation for the transverse vibra-
tion of a translating string with constant length and tension and an
arbitrary velocity profile. Hamilton’s principle can be applied to a
control volume with variable mass when the virtual displacement
on an open control surface vanishes �6�.

Swope and Ames �7� obtained the response of a translating
string with constant length and velocity and homogenous bound-
ary conditions using the method of characteristics and discussed
the properties of wave propagation in the string. Tan and Ying �8�
presented an exact solution for the response of a translating string
with constant length and velocity and various boundary conditions
by applying the transfer function formulation. Besides exact solu-
tions, spatial discretization methods, such as Galerkin and as-

sumed modes methods, have been commonly used for a translat-
ing medium. Instead of using eigenfunctions of a stationary string,
Wickert and Mote �9� showed that the use of complex eigenfunc-
tions of a translating string as the basis functions can significantly
improve the eigenvalue predictions. Chen �10� used the translating
string eigenfuctions to discretize a translating string coupled to a
mass-spring-damper system. Jha and Parker �11� compared the
spatial discretization methods using the stationary string and
translating string eigenfunctions and examined the effectiveness
of each method.

Compared to time-invariant translating strings, methods of so-
lution for time-varying translating strings are far more underde-
veloped. Carrier �12� first studied the dynamics of a translating
string with parabolically varying length. Schaffers �13� studied the
longitudinal vibration of a slowly moving mine hoist, and ob-
tained the response of the hoist by using Riemann’s method of
characteristic curves. Using the method of distorted images, Ram
and Caldwell �14� derived a wave solution for a stationary string
with both boundaries moving with the same time-varying veloc-
ity; the problem can be related to a translating string with constant
length and variable velocity through a coordinate transformation.
Zhu and Guo �15� determined the free and forced responses of a
translating string with an arbitrary velocity profile using the
method of characteristic transformation. Zhu and Chen �16� deter-
mined the free and forced responses of translating strings and
beams with variable length using three spatial discretization meth-
ods and showed that the three methods are mathematically equiva-
lent.

Miranker �5� first analyzed the rate of change of the total me-
chanical energy of a translating string with constant length and
showed that there is a periodic energy transfer between the por-
tions of the string within and outside the two fixed boundaries.
Wickert and Mote �17� added energy flux terms to the rate of
change of the energy in Ref. �5� and explained the rates of change
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of the vibratory energies by the work-energy relation. Lee and
Mote �18� studied the energy transfer mechanisms of a translating
string at various boundaries for propagating harmonic waves.
Renshaw et al. �19� defined Lagrangian and Eulerian energy func-
tionals for translating media with constant length and velocity.
Zhu �20� introduced control volume and system viewpoints for
differentiating energies of translating media with constant and
variable lengths. The rate of change of energy in Ref. �5� corre-
sponds to the Eulerian energy functional in Ref. �19� and the
control volume viewpoint in Ref. �20�. The rates of change of
energies in Ref. �17� correspond to the Lagrangian energy func-
tionals in Ref. �19� and the system viewpoint in Ref. �20�.

Some unstable phenomena have been revealed in studies of
strings with time-varying length. The spaghetti problem �12� ex-
hibits an instability similar to that of a simple pendulum with
variable length, i.e., the vibration amplitude increases as the
length of the string decreases. Cooper �21� analyzed the long-time
behavior and the energy growth of a stationary string with a sinu-
soidally moving boundary. The unstable behavior of the string is
characterized by the bounded displacement and exponentially
growing energy. Using the rates of change of vibratory energies
from the control volume viewpoint, Zhu and Ni �22� investigated
the general stability characteristics of horizontally and vertically
translating strings and beams with variable length. The vibratory
energy was found to decrease and increase in general during ex-
tension and retraction, respectively.

The dynamics of a translating string with variable length is an
interesting research topic due to its important application, espe-
cially to the elevator industry �23�. While approximate methods,
such as perturbation methods �24,25�, modal methods �16�, finite
element methods �26�, and multibody dynamics methods �27�,
have been used to find the free and forced responses of translating
media with variable length, the exact solutions for the free and
forced responses of the systems with an arbitrary movement pro-
file have not been obtained.

In this work, the characteristic transformation in Ref. �15� is
used to determine the exact response of a translating string with
constant tension and arbitrarily varying length under general ini-
tial conditions and external excitation. The least upper bound of
the displacement of the freely vibrating string is obtained. The
forced response of the string with nonhomogeneous boundary
conditions is obtained using two methods. The rate of change of
the vibratory energy of the string is derived and interpreted from
system and control viewpoints. A new approach is presented to
derive the rate of change of the vibratory energy from the system
viewpoint. The rate of change of the vibratory energy from the
control volume viewpoint is derived using three different ap-
proaches: direct differentiation, employment of a new energy flux
function describing the rate of energy transfer along the translat-
ing string, and use of the wave propagation properties. The energy
transfer mechanism of the translating string at a boundary to
which the string has a relative motion is provided and the unstable
shortening string behavior is explained. The solution methods are
applied to a moving elevator cable and the free response of the
cable is compared to that from the modal methods in Ref. �16�. An
interesting parametric instability phenomenon in a translating
string with sinusoidally varying length is found numerically. It is
discovered that when the length variation frequency of the trans-
lating string equals a natural frequency of the string with the av-
eraged length and velocity, a parametric instability characterized
by the bounded displacement and unbounded energy occurs, and a
shock wave forms.

2 Equation of Motion
Consider a uniform string of mass per unit length � and con-

stant tension P, translating at a subcritical speed �V�T����P /�,
where T is time, between two boundaries �Fig. 1�; the tension
change due to acceleration of the string is assumed to be negli-
gible. When the tension change due to acceleration of the string is

considered, finite difference and modal �16� methods can be used
to find the dynamic response. The string has a relative motion to
the left boundary and is fixed to the right boundary. The span
length of the string is L�T�, satisfying dL�T� /dT=V�T�; the longi-
tudinal vibration of the string is not considered. The transverse
displacement of a material particle, instantaneously located at a
spatial position X� �0,L�T�� at time T, is described by U�X ,T�.
The string is subjected to a distributed external force F�X ,T�. A
concentrated external force can be represented by F�X ,T� using a
spatial Dirac delta function.

The variables L�0�, P, and � are used to nondimensionalize the
system parameters, and the corresponding dimensionless variables
are defined by

x =
X

L�0�
, t = T� P

�L2�0�
, l�t� =

L�T�
L�0�

�1�

u�x,t� =
U�X,T�

L�0�
, f�x,t� =

F�X,T�L�0�
P

, v�t� =
V�T�
�P/�

where v�t�= l̇�t�� �−1,1�, with the overdot denoting differentia-
tion with respect to t, is the dimensionless subcritical transport
velocity, and l�0�=1. Note that a positive velocity v�t� indicates
that the length of the string l�t� increases instantaneously with
time and a negative velocity indicates that the length decreases
instantaneously.

The nondimensional governing equation for the linear trans-
verse vibration of the translating string is �5�

utt�x,t� + 2v�t�uxt�x,t� − �1 − v2�t��uxx�x,t� + v̇�t�ux = f�x,t� ,
�2�

0 � x � l�t�

where a subscript denotes partial differentiation. The boundary
conditions are of the general form

u�0,t� = N1�t�, u�l�t�,t� = N2�t� �3�

where N1�t� and N2�t� are the prescribed, dimensionless displace-
ments of the string at the two boundaries. The initial conditions
are

u�x,0� = a�x�, ut�x,0� = b�x�, 0 � x � 1 �4�

where a�x� and b�x� are the dimensionless initial displacement
and velocity of the string, respectively. The following displace-
ment continuity conditions are assumed at the two boundaries at
t=0:

N1�0� = a�0�, N2�0� = a�1� �5�

3 Method of Solution

3.1 Characteristic Transformation. The characteristic trans-
formation in Ref. �15� is employed here because the governing
equation in Eq. �2� is of the same form as that in Ref. �15�:

Fig. 1 Schematic of a translating string with variable length;
the variables labeled are dimensionless
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�� = ��x,t� = x −�
0

t

v���d� − t

� = ��x,t� = x −�
0

t

v���d� + t	 �6�

where �� ,�� are the characteristic coordinates, which are curvilin-
ear when v̇�t��0. This represents the characteristics of a wave
that propagates downstream with a time-varying velocity 1+v�t�
and a wave that propagates upstream with a time-varying velocity
1−v�t�. The two coordinate systems, �� ,�� and �x , t�, have a one-
to-one correspondence because the Jacobian does not vanish. By
use of the chain rule of differentiation, Eq. �2� becomes �15�

z����,�� = −
1

4
Q��,�� �7�

where

z��,�� = z���x,t�,��x,t�� = u�x,t� �8�

is the dependent variable in the �� ,�� coordinate system, and

Q��,�� = f
 � + �

2
+�

0

��−��/2

v���d�,
� − �

2 � �9�

is the forcing function in the transformed equation.
The boundary and initial conditions associated with the govern-

ing equation in Eq. �7� are determined next. Substituting the
boundary equation x=0 into the first equation in Eq. �6� yields

� = −�
0

t

v���d� − t, t � �0,�� �10�

Since �̇�t�=−v�t�−1�0, � is a strictly monotonically decreasing
function of t. Hence, the inverse function for Eq. �10� exists, and
it is denoted by t=w���. It is assumed that �v�t��	r�1, where r
�R is a constant. Consequently,

� = −�
0

t

v���d� − t 
�
0

t

�v����d� − t 
�
0

t

rd� − t = �r − 1�t

�11�

and �→−� as t→�. Therefore, t=w��� is a strictly monotonically
decreasing function of �� �−� ,0�. Substituting t=w��� into the
second equation in Eq. �6� gives the equation for the boundary B1
in the �−� plane �Fig. 2�b��, which corresponds to the boundary
x=0 in the x− t plane �Fig. 2�a��:

� = −�
0

t

v���d� + t = � + 2w���, � � �− �,0� �12�

Note that B1 is a strictly monotonically decreasing curve in the
�−� plane since

����� = 1 + 2w���� = 1 − 2
1

�̇�t�
= −

1 − v�t�
1 + v�t�

� 0 �13�

where a prime denotes differentiation with respect to the argu-
ment. Because �v�t��	r�1, one has by use of Eq. �13�,

−
1 + r

1 − r

 ����� 
 −

1 − r

1 + r
�14�

Hence, B1 is not asymptotic to any vertical line �=const in the left
half of the �−� plane. Using t=w���, the first equation in Eq. �3�,
and Eq. �8� yields the boundary condition on B1 in the �−� plane:

z��,�� = N1�w����, ��,�� � B1 �15�

Substituting x= l�t�=1+�0
t v���d� into Eq. �6� yields the equation

for the boundary B2 in the �−� plane �Fig. 2�b��, which corre-
sponds to the boundary x= l�t� in the x− t plane �Fig. 2�a��:

� = 2 − �, � � �− �,1� �16�

By use of t=1−�, the second equation in Eq. �3�, and Eq. �8�, the
boundary condition on B2 in the �−� plane is

z��,�� = N2�1 − ��, ��,�� � B2 �17�

Finally, by use of t=0 in Eq. �6�, the equation for the line B3 in the
�−� plane �Fig. 2�b��, corresponding to t=0 in the x− t plane �Fig.
2�a��, is

� = �, � � �0,1� �18�

Using the chain rule of differentiation and Eq. �6� yields

�

�t
= �− v�t� − 1�

�

��
+ �− v�t� + 1�

�

��
�19�

By use of t=0, x=�, and Eqs. �19�, �4�, and �8�, the initial condi-
tions on B3 in the �−� plane are

z��,�� = a���, ��,�� � B3 �20�

�− v�0� − 1�
�z

��
+ �− v�0� + 1�

�z

��
= b���, ��,�� � B3 �21�

Let � be the domain enclosed by Bi �i=1,2 ,3� in the �−�
plane �Fig. 2�b��; it corresponds to the domain � enclosed by x
=0, x= l�t�, and t=0 in the x− t plane in Fig. 2�a�. The partial
differential equation and its boundary and initial conditions in the
�x , t� coordinate system �Eqs. �2�–�4�� have been transformed to a
standard hyperbolic equation in the �� ,�� coordinate system �Eqs.
�7�, �15�, �17�, �20�, and �21��. Hence, by Eq. �6�, �=const and
�=const are the characteristic curves in the �−� plane. Using
these characteristic curves, the domain of interest � in the �−�
plane is partitioned into subdomains Li, Ri, and Ci shown in Fig.
3, where Li �i=1,2 , . . . � is the ith left subdomain, Ri �i
=1,2 , . . . � is the ith right subdomain, and Ci �i=0,1 ,2 , . . . � is the
ith central subdomain. The zeroth subdomain group consists of
only C0, and the ith �i=1,2 ,3 , . . . � group of subdomains consists
of Li, Ri, and Ci.

3.2 d’Alembert Solution in the Subdomain C0. A classical
solution for a stationary string with an infinite length and arbitrary
initial conditions is given by d’Alembert �28�. The d’Alembert
solution for the translating string governed by Eq. �7�, in the sub-
domain C0 in the �−� plane, is of the general form

z��,�� = h0��� + g0��� −
1

4�
0

��
0

�

Q�s,��d�ds, ��,�� � C0

�22�

where h0�·� and g0�·� are arbitrary functions, representing the
waves that originate from B3 propagating along the characteristic
curves, �=const and �=const, in the �−� plane, respectively;

Fig. 2 Domains of the original „a… and transformed „b… equa-
tions and their boundaries
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h0�·� and g0�·� also represent the rightward and leftward propagat-
ing waves in the x− t plane, respectively. The third term on the
right-hand side of Eq. �22� shows the effect of the distributed
external force on the response. It should be mentioned that when
one carries out the integration for this term, Q�� ,�� has the form
of Eq. �9� if �� ,���� and is set to zero otherwise.

Using Eq. �22� in the initial condition in Eq. �20� and using Eq.
�18� yield for �� ,���B3,

h0��� + g0��� −
1

4�
0

��
0

�

Q�s,��d�ds = a���, � � �0,1� �23�

Differentiating Eq. �23� with respect to � and using Leibnitz’s rule
yield

h0���� + g0���� −
1

4�
0

�

Q��,��d� −
1

4�
0

�

Q�s,��ds = a���� ,

�24�
� � �0,1�

Using Eq. �22� in the initial condition in Eq. �21� and using Eq.
�18� yield for �� ,���B3,

�− v�0� − 1�h0���� + �− v�0� + 1�g0���� −
1

4
�− v�0� − 1��

0

�

Q��,��d�

−
1

4
�− v�0� + 1��

0

�

Q�s,��ds = b���, � � �0,1� �25�

Solving Eqs. �24� and �25� for h0���� and g0���� yields

h0���� =
1 − v�0�

2
a���� −

1

2
b��� +

1

4�
0

�

Q��,��d� �26�

g0���� =
1 + v�0�

2
a���� +

1

2
b��� +

1

4�
0

�

Q�s,��ds �27�

Integrating the above equations over �� �0,1� yields

h0��� = h0�0� +
1 − v�0�

2
a��� −

1

2�
0

�

b�s�ds +
1

4�
0

��
0

�

Q��,��d�d�

�28�

g0��� = g0�0� +
1 + v�0�

2
a��� +

1

2�
0

�

b�s�ds +
1

4�
0

��
0

�

Q�s,��dsd�

�29�

Substituting Eqs. �28� and �29� into Eq. �22� and using the first
equation in Eqs. �3� and �5� yield

h0�0� + g0�0� = 0 �30�

By use of Eq. �30�, Eqs. �28� and �29� can be written as

h0��� =
1 − v�0�

2
a��� −

1

2�
�0

�

b�s�ds +
1

4�
0

��
0

�

Q��,��d�d� ,

�31�
� � �0,1�

g0��� =
1 + v�0�

2
a��� +

1

2�
�0

�

b�s�ds +
1

4�
0

��
0

�

Q�s,��dsd� ,

�32�
� � �0,1�

where �0�R satisfies g0�0�=−�1 /2��0
�0b�s�ds. The d’Alembert so-

lution of Eq. �7� in the subdomain C0, with the initial conditions in
Eqs. �20� and �21�, is of the form in Eq. �22�, where h0��� is given
by Eq. �31� and g0�·� is given by Eq. �32�. Note that �0 in Eqs.
�31� and �32� can be set to any value because its effects cancel
when one adds h0��� and g0��� in Eq. �22�; �0 can be conveniently
set to zero.

3.3 Solution in the ith Group of Subdomains „iÐ1… for the
Case With Homogenous Boundary Conditions „N1„t…=N2„t…
=0…. The solution of the governing equation in Eq. �7� in the
subdomain L1, as shown in Fig. 3, is of the general form

z��,�� = h1��� + g0��� −
1

4�
0

��
0

�

Q�s,��d�ds, ��,�� � L1

�33�

where g0�·� is given by Eq. �32�, representing a wave that origi-
nates from B3 propagating along a characteristic curve �=const,
and h1�·� is a wave function, representing a wave that originates
from the portion of B1 in contact with L1, denoted here by B1�L1
in which the notation “�” is used in what follows to convey the
same meaning, propagating along a characteristic curve �=const.
Using Eq. �33� in the homogeneous boundary condition z�� ,�
+2w����=0 on B1 yields

h1��� = − g0�� + 2w���� +
1

4�
0

��
0

�+2w���

Q�s,��d�ds ,

�34�
� � �w��1�,0�

Note that due to the continuity of the displacement, the solution
for an intersection point, such as the point corresponding to �
=w��1� in Eq. �34�, of two neighboring curves can be calculated
from the formula for each curve. This is also true for an intersec-
tion curve of two neighboring subdomains. Substituting Eq. �34�
into Eq. �33� yields the solution of Eq. �7� in the subdomain L1:

Fig. 3 Partition of the domain of interest and wave propaga-
tion in the �−� coordinate system. The wave functions hn and
gn „n=0,1,2, . . . … that propagate along �=const and �=const,
respectively, are labeled.

031003-4 / Vol. 75, MAY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



z��,�� = g0��� − g0�� + 2w����

+
1

4�
�

0�
�+2w���

�

Q�s,��d�ds, ��,�� � L1 �35�

Define a wave function g1��� on � � �� ,���B2�R1�, repre-
senting a wave that originates from the portion of B2 in contact
with R1, propagating along a characteristic curve �=const. The
solution of Eq. �7� in the subdomain R1 is of the general form

z��,�� = h0��� + g1��� −
1

4�
0

��
0

�

Q�s,��d�ds, ��,�� � R1

�36�

Using Eq. �36� in the homogeneous boundary condition z�2
−� ,��=0 on B2 yields

g1��� = − h0�2 − �� +
1

4�
0

2−��
0

�

Q�s,��d�ds, � � �1,2�

�37�
Substituting Eq. �37� into Eq. �36� yields the solution of Eq. �7� in
the subdomain R1:

z��,�� = h0��� − h0�2 − �� +
1

4�
�

2−��
0

�

Q�s,��d�ds, ��,�� � R1

�38�

The solution of Eq. �7� in the subdomain C1 is of the general
form

z��,�� = h1��� + g1��� −
1

4�
0

��
0

�

Q�s,��d�ds, ��,�� � C1

�39�
Substituting Eqs. �34� and �37� into Eq. �39� yields the solution of
Eq. �7� in the subdomain C1:

z��,�� = − g0�� + 2w���� − h0�2 − �� +
1

4�
0

��
0

�+2w���

Q�s,��d�ds

+
1

4�
0

2−��
0

�

Q�s,��d�ds, ��,�� � C1 �40�

The solution of Eq. �7� in the ith �i2� group of subdomains
Li, Ri, and Ci is obtained by finding a recursive relation so that the
solutions in these subdomains can eventually be related to those in
the zeroth and first groups of subdomains C0, L1, R1, and C1. As
shown in Fig. 3, the coordinates ��n ,�n� of a point in the nth
group of subdomains Ln, Rn, and Cn, with in2, correspond to
the coordinates ��n→n−1 ,�n→n−1� of a point in the �n−1�th group
of subdomains Ln−1, Rn−1, and Cn−1, and the correspondence de-
pends on the boundary curves B1 and B2. More specifically, a
point ��n ,�n��Cn corresponds to a point ��n→n−1 ,�n→n−1�
�Cn−1, a point ��n ,�n��Ln corresponds to a point
��n→n−1 ,�n→n−1��Rn−1, and a point ��n ,�n��Rn corresponds to
a point ��n→n−1 ,�n→n−1��Ln−1. Furthermore, the correspondence
above provides an insight on wave propagation, as shown below.

Define a wave function hn�·� on � � �� ,���B1�Ln�, represent-
ing a wave that originates from the portion of B1 in contact with
Ln, propagating along a characteristic curve �=const, and a wave
function gn�·� on � � �� ,���B2�Rn�, representing a wave that
originates from the portion of B2 in contact with Rn, propagating
along a characteristic curve �=const. An infinitesimal portion of a
wave in a small region of the point ��n→n−1 ,�n→n−1�, propagating
along �=�n→n−1, is denoted by hn−1��n→n−1�. When it arrives at
the boundary B2, it becomes a new infinitesimal wave gn��n� that

propagates along �=�n. Similarly, an infinitesimal portion of a
wave in a small region of the point ��n→n−1 ,�n→n−1�, propagating
along �=�n→n−1, is denoted by gn−2��n→n−1�. When it arrives at
the boundary B1, it becomes a new infinitesimal wave hn��n� that
propagates along �=�n. The two new waves gn��n� and hn��n�
meet subsequently at the point ��n ,�n� in the �−� plane.

More generally, a point ��i→m ,�i→m� in the mth �m� i� group
of subdomains corresponds to a point ��i ,�i� in the ith group of
subdomains by recursively applying the correspondence estab-
lished above for the two points in the neighboring groups of sub-
domains. For instance, if ��i→i−1 ,�i→i−1� corresponds to ��i ,�i�
and ��i→i−1→i−2 ,�i→i−1→i−2� to ��i→i−1 ,�i→i−1�, then
��i→i−1→i−2 ,�i→i−1→i−2� corresponds to ��i ,�i� and
��i→i−1→i−2 ,�i→i−1→i−2� is denoted by ��i→i−2 ,�i→i−2�.

The general forms of solutions of Eq. �7� in the subdomains Ln,
Cn, and Rn are

z��,�� = hn��� + gn−1��� −
1

4�
0

��
0

�

Q�s,��d�ds, ��,�� � Ln

�41�

z��,�� = hn��� + gn��� −
1

4�
0

��
0

�

Q�s,��d�ds, ��,�� � Cn

�42�

z��,�� = hn−1��� + gn��� −
1

4�
0

��
0

�

Q�s,��d�ds, ��,�� � Rn

�43�

respectively. Note that the general solutions in the subdomains
Ln−1, Cn−1, and Rn−1 can be obtained by changing the index n to
n−1 in Eqs. �41�–�43�. If ��n ,�n��Ln, then ��n→n−1 ,�n→n−1�
�Rn−1. Using Eqs. �41� and �43� yields

z��n,�n� = hn��n� + gn−1��n� −
1

4�
0

�n�
0

�n

Q�s,��d�ds ,

�44�
��n,�n� � Ln

z��n→n−1,�n→n−1� = hn−2��n→n−1� + gn−1��n→n−1�

−
1

4�
0

�n→n−1�
0

�n→n−1

Q�s,��d�ds ,

�45�
��n→n−1,�n→n−1� � Rn−1

respectively. Applying the homogeneous boundary conditions,
z��n ,�n→n−1�=0 along B1�Ln and z��n→n−1 ,�n�=0 along
B2�Rn−1, to Eqs. �41� and �43� yields

hn��n� = − gn−1��n→n−1� +
1

4�
0

�n�
0

�n→n−1

Q�s,��d�ds �46�

gn−1��n� = − hn−2��n→n−1� +
1

4�
0

�n→n−1�
0

�n

Q�s,��d�ds �47�

respectively. Substituting Eqs. �46� and �47� into Eq. �44� and
using Eq. �45� yield
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z��n,�n� = − z��n→n−1,�n→n−1�

+
1

4�
�n

�n→n−1�
�n→n−1

�n

Q�s,��d�ds, ��n,�n� � Ln

�48�

If ��n ,�n��Cn or Rn, using the similar procedure to that from
Eqs. �44�–�47�, one finds that Eq. �48� still holds. Hence, the
solution at any point in the nth �n2� group of subdomains is
related to that at the corresponding point in the �n−1�th group of
subdomains through

z��n,�n� = − z��n→n−1,�n→n−1� +
1

4�
�n

�n→n−1�
�n→n−1

�n

Q�s,��d�ds ,

�49�
��n,�n� � Ln � Rn � Cn

To obtain the solution at any point in the ith �i2� group of
subdomains, one uses Eq. �49� recursively for the corresponding
points from the ith group to the second group of subdomains:

z��i,�i� = − z��i→i−1,�i→i−1� +
1

4�
�i

�i→i−1�
�i→i−1

�i

Q�s,��d�ds

z��i→i−1,�i→i−1� = − z��i→i−2,�i→i−2�

+
1

4�
�i→i−1

�i→i−2�
�i→i−2

�i→i−1

Q�s,��d�ds

�50�
¯

z��i→2,�i→2� = − z��i→1,�i→1� +
1

4�
�i→2

�i→1�
�i→1

�i→2

Q�s,��d�ds

Using the equations in Eq. �50� and replacing ��i ,�i� by �� ,��
yield

z��,�� = �− 1�i−1z��i→1,�i→1� + �− 1�i−21

4�
�i→2

�i→1�
�i→1

�i→2

Q�s,��d�ds

+ ¯ +
1

4�
�

�i→i−1�
�i→i−1

�

Q�s,��d�ds , �51�

��,�� � Li � Ri � Ci

where z��i→1 ,�i→1� can be obtained from Eq. �35�, �38�, or �40�
depending on which subdomain the point ��i→1 ,�i→1� belongs to.

In summary, the solution of Eq. �7�, with homogenous bound-
ary conditions as given by Eqs. �15� and �17� with N1�w����
=N2�1−��=0, and the initial conditions in Eqs. �20� and �21�, is
given by Eqs. �22�, �35�, �38�, and �40� if �� ,��
�C0�L1�R1�C1, and by Eq. �51� if �� ,���Li�Ri�Ci

�i2�.

3.4 Boundedness of the Displacement of a Freely „f„x , t…
=N1„t…=N2„t…=0… Vibrating String. When f�x , t�=0, one has
Q�� ,��=0. Setting Q�� ,��=0 in Eq. �51� and taking the absolute
value on both sides of the equation yield

�z��,��� = �z��i→1,�i→1��, ��,�� � Li � Ri � Ci �52�

for i2. Hence, the least upper bound of the solution for the
whole domain of interest � equals to that for the domain
C0�L1�R1�C1. By Eqs. �22�, �35�, �38�, and �40�, the solutions
for the zeroth and first groups of subdomains satisfy the following
inequalities:

�z��,��� 	 max
0	�1,2	1

�h0��1� + g0��2��, ��,�� � C0 �53�

�z��,��� 	 max
0	�1,2	1

�g0��1� − g0��2��, ��,�� � L1 �54�

�z��,��� 	 max
0	�1,2	1

�h0��1� − h0��2��, ��,�� � R1 �55�

�z��,��� 	 max
0	�1,2	1

�h0��1� + g0��2��, ��,�� � C1 �56�

With the above inequalities, the displacement in the domain
C0�L1�R1�C1 is bounded by

�z��,��� 	 max max
0	�1,2	1

�h0��1� + g0��2��,

max
0	�1,2	1

�g0��1� − g0��2��, max
0	�1,2	1

�h0��1� − h0��2���

�57�

Substituting Eqs. �31� and �32� into the right-hand side of Eq. �57�
yields the least upper bound of the displacement expressed in
terms of the initial conditions:

max� max
0	�1,2	1

� 1 − v�0�
2

a��1� +
1 + v�0�

2
a��2� +

1

2�
�1

�2

b�s�ds�,

max
0	�1,2	1

� 1 + v�0�
2

�a��1� − a��2�� +
1

2�
�2

�1

b�s�ds�,

max
0	�1,2	1

� 1 − v�0�
2

�a��1� − a��2�� −
1

2�
�2

�1

b�s�ds�� �58�

When the initial velocity b�x� is zero, the least upper bound of
the displacement in Eq. �58� becomes

max� max
0	�1,2	1

�1 − v�0�
2

a��1� +
1 + v�0�

2
a��2��,

max
0	�1,2	1

�1 + v�0�
2

�a��1� − a��2���,

max
0	�1,2	1

�1 − v�0�
2

�a��1� − a��2���� �59�

Without loss of generality, it is assumed that the initial transport
velocity v�0�0, and one has

max
0	�1,2	1

�1 − v�0�
2

�a��1� − a��2���
	 max

0	�1,2	1
�1 + v�0�

2
�a��1� − a��2��� �60�

The least upper bound of the displacement in Eq. �59� can be
reduced to

max� max
0	�1,2	1

�1 − v�0�
2

a��1�

+
1 + v�0�

2
a��2��, max

0	�1,2	1
�1 + v�0�

2
�a��1� − a��2���� �61�

In addition, when the initial displacement a�x� is non-negative or
nonpositive for all 0�x�1, the following inequalities hold:
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max
0	�1,2	1

�1 + v�0�
2

�a��1� − a��2���
	 max

0	�1,2	1
�1 − v�0�

2
a��1� +

1 + v�0�
2

a��2��
	 max

0	�1	1
�1 − v�0�

2
a��1�� + max

0	�2	1
�1 + v�0�

2
a��2��

= max
0	x	1

�a�x�� �62�

Using Eq. �62� in Eq. �61�, one finds that the least upper bound of
the displacement is max

0	x	1

�a�x��, which is, as expected, the maxi-

mum initial displacement of the string along its spatial domain.

3.5 Solution for the Case With Nonhomogeneous Bound-
ary Conditions

3.5.1 Transformation Method. A standard transformation �29�
can be used to convert the linear partial differential equation with
nonhomogenous boundary conditions to one with homogeneous
boundary conditions. For instance, for the case of N1�t��0 and
N2�t�=0, the following transformation can be used:

u�x,t� = u*�x,t� +
l�t� − x

l�t�
N1�t� �63�

where u*�x , t� satisfies the partial differential equation

u
tt
* + 2v�t�u

xt
* − �1 − v2�t��u

xx
* + v̇�t�u

x
*

= f�x,t� − N̈1�t� + l̈�t�
N1�t�
l�t�

+ 2� l̇�t�Ṅ1�t�
l�t�

−
l̇2�t�N1�t�

l2�t�
�

+ x� N̈1�t�
l�t�

−
l̈�t�N1�t�

l2�t�
−

2l̇�t�Ṅ1�t�
l2�t�

+
2l̇2�t�N1�t�

l3�t�
� �64�

with the homogenous boundary conditions

u*�0,t� = 0, u*�l�t�,t� = 0 �65�
and the initial conditions

u*�x,0� = a�x� − �1 − x�N1�0� ,
�66�

u
t
*�x,0� = b�x� + �N1�0� − �1 − x�Ṅ1�0��

The method for finding the solution for u* that satisfies Eqs.
�64�–�66� has been presented in Secs. 3.1–3.3. The solution for u
is obtained by substituting the solution for u* into Eq. �63�.

3.5.2 Direct Wave Method. Since the domain of dependence
for any point in the subdomain C0 is a subset of C0 itself, the
boundary conditions do not affect the solution in Eq. �22� for the
subdomain C0. The solution procedure for the other groups of
subdomains is essentially the same as that in Sec. 3.3, as demon-
strated below for the first group of subdomains.

The solutions of Eq. �7� in the subdomains L1 and R1 are given
by Eqs. �33� and �36�, respectively. Applying the nonhomoge-
neous boundary conditions, z�� ,�+2w����=N1�w���� and z�2
−� ,��=N2��−1�, to Eqs. �33� and �36� yields

h1��� = − g0�� + 2w���� +
1

4�
0

��
0

�+2w���

Q�s,��d�ds

+ N1�w����, � � �w��1�,0� �67�

g1��� = − h0�2 − �� +
1

4�
0

2−��
0

�

Q�s,��d�ds + N2�� − 1� ,

�68�

� � �1,2�
respectively. Substituting Eqs. �67� and �68� into Eqs. �33� and
�36� yields the solutions in the subdomains L1 and R1, respec-
tively:

z��,�� = g0��� − g0�� + 2w���� +
1

4�
�

0�
�+2w���

�

Q�s,��d�ds

+ N1�w����, ��,�� � L1 �69�

z��,�� = h0��� − h0�2 − �� +
1

4�
�

2−��
0

�

Q�s,��d�ds

+ N2�� − 1�, ��,�� � R1 �70�

Similarly, the solution of Eq. �7� in the subdomain C1 is given by
Eq. �39�. Substituting Eqs. �67� and �68� into Eq. �39� yields the
solution in the subdomain C1:

z��,�� = − g0�� + 2w���� − h0�2 − �� +
1

4�
0

��
0

�+2w���

Q�s,��d�ds

+
1

4�
0

2−��
0

�

Q�s,��d�ds + N1�w���� + N2�� − 1� ,

�71�
��,�� � C1

To obtain the solution of Eq. �7� in the ith �i2� group of
subdomains, one first establishes the correspondence between a
point ��n ,�n� in the nth �in2� group of subdomains and a
point ��n→n−1 ,�n→n−1� in the �n−1�th group of subdomains by
following the procedure in Sec. 3.3 and using the nonhomoge-
neous boundary conditions z��n ,�n→n−1�=N1�w��n�� and
z��n→n−1 ,�n�=N2��n−1�:

z��n,�n� = − zn−1��n→n−1,�n→n−1� +
1

4�
�n

�n→n−1�
�n→n−1

�n

Q�s,��d�ds

+ N1�w��n�� + N2��n − 1�, ��n,�n� � Ln � Rn � Cn

�72�

The solution at any point in the ith �i2� group of subdomains is
obtained by using Eq. �72� recursively, as shown in Sec. 3.3:

z��,�� = �− 1�i−1z1��i→1,�i→1� + �− 1�i−2�
�i→2

�i→1�
�i→1

�i→2

Q�s,��d�ds

+ ¯ +�
�

�i→i−1�
�i→i−1

�

Q�s,��d�ds + �− 1�i−2N1�w��i→2��

+ �− 1�i−3N1�w��i→3�� ¯ − N1�w��i→i−1��

+ N1�w���� + �− 1�i−2N2��i→2 − 1� + �− 1�i−3N2��i→3

− 1� ¯ − N2��i→i−1 − 1� + N1�� − 1� �73�
The boundary excitation shows up in the last four lines of Eq.
�73�.

4 Energy Consideration

4.1 Rate of Change of Energy From System and Control
Volume Viewpoints

4.1.1 System Viewpoint. The dimensionless energy density
�energy per unit length� associated with the transverse vibration of
the translating string, at a fixed spatial position x at time t, is �22�

��x,t� = �p�x,t� + �k�x,t� �74�
where
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�p�x,t� =
1

2
ux

2�x,t� �75�

�k�x,t� =
1

2
�ut + vux�2 �76�

are the dimensionless potential and kinetic energy densities that
result from the transverse vibration of the string, respectively.

A system is defined here as the collection of material particles
occupying the spatial domain x �x� �0, l�t0��� at a time t0. At time
t, the system occupies the spatial domain x �x� ��t0

t v���d� , l�t0�
+�t0

t v���d��� and the vibratory energy of the system is

Es�t� =�
�t0

t v���d�

l�t0�+�t0
t v���d�

��x,t�dx �77�

The rate of change of Es�t� is

dEs�t�
dt

=
d

dt���t0
t v���d�

l�t0�+�t0
t v���d�

��x,t�dx� �78�

To move the time derivative inside the integral in Eq. �78�, a
moving coordinate x̃ that moves with the same velocity as the
string and coincides with the coordinate x at time t0 is introduced:

x = x̃ +�
t0

t

v���d� � ��x̃,t� �79�

Using Eq. �79� in Eq. �78� yields

dEs�t�
dt

=
d

dt��
0

l�t0�

����x̃,t�,t�dx̃� �80�

Since the limits of the integral in Eq. �80� are fixed, the time
derivative can be moved inside the integral in Eq. �80�:

dEs�t�
dt

=�
0

l�t0�
d

dt
����x̃,t�,t�dx̃ =�

0

l�t0�

��x���x̃,t�,t��t

+ �t���x̃,t�,t��dx̃ =�
0

l�t0� � �

�t
+ v�t�

�

�x
�����x̃,t�,t�dx̃

�81�

where Eq. �79� has been used. Using Eq. �79� in Eq. �81� yields

dEs�t�
dt

=�
�t0

t v���d�

l�t0�+�t0
t v���d� � �

�t
+ v�t�

�

�x
���x,t�dx �82�

The rate of change of the vibratory energy of the system at time t0
is obtained from Eq. �82�:

dEs�t0�
dt

=�
0

l�t0� � �

�t
+ v�t0�

�

�x
���x,t0�dx �83�

Substituting Eqs. �74�–�76� into Eq. �83� and using Eqs. �2� and
�3� at t= t0 yield

dEs�t0�
dt

= − v�t0�ux
2�0,t0� +�

0

l�t0�

f�x,t0��ut�x,t0� + v�t0�ux�x,t0��dx

− ux�0,t0�Ṅ1�t0� + ux�l�t0�,t0�Ṅ2�t0� �84�

Note that the time derivatives of Eq. �3� at t= t0, given by

ut�0, t0�= Ṅ1�t0� and ut�l�t0� , t0�+v�t0�ux�l�t0� , t0�= Ṅ2�t0�, are also
used in Eq. �84�.

Equation �84� establishes the work-energy relation of the sys-
tem along the transverse direction at time t0. The first and third
terms on the right-hand side of Eq. �84� can be written as

−ux�0, t0��vux�0, t0�+ Ṅ1�t0��, which is the product of the trans-
verse component of the tension and the transverse velocity of the
string at x=0 at t= t0, representing the rate of work done by the
transverse component of the tension at x=0. The second term on
the right-hand side of Eq. �84� represents the rate of work done by
the distributed external force. The fourth term on the right-hand
side of Eq. �84� represents the rate of work done by the transverse
component of the tension at x= l�t0�.

4.1.2 Control Volume Viewpoint. A control volume at time t is
defined as the spatial domain �x�x� �0, l�t���. The vibratory en-
ergy of the string within the control volume is

Ecv�t� =�
0

l�t�

��x,t�dx �85�

The rate of change of Ecv�t� is obtained by differentiating Eq. �85�
using Leibnitz’s rule and Eqs. �74�–�76�:

dEcv�t�
dt

=�
0

l�t�

ux�x,t�uxt�x,t� + �ut�x,t� + v�t�ux�x,t���utt�x,t�

+ vuxt�x,t� + v̇�t�ux�x,t���dx +
1

2
v�t�ux

2�l�t�,t�

+ �ut�l�t�,t� + v�t�ux�l�t�,t��2� �86�

Using Eqs. �2� and �3� and the time derivatives of Eq. �3� in Eq.
�86� yields

dEcv�t�
dt

= −
1

2
v�t��1 − v2�t��ux

2�0,t� +�
0

l�t�

f�x,t��ut�x,t�

+ v�t�ux�x,t��dx − ux�0,t�Ṅ1�t� + ux�l�t�,t�Ṅ2�t�
�87�

Evaluating Eq. �87� at t= t0 yields the rate of change of the vibra-
tory energy of the string within the control volume at time t0.
Comparing the resulting expression with Eq. �84� yields

dEcv�t0�
dt

=
dEs�t0�

dt
+ v�t0���0,t0� �88�

The same equation is obtained in Ref. �22� using a different ap-
proach. The first term on the right-hand side of Eq. �88� represents
the rates of work done by nonconservative domain and boundary
forces, as explained in Sec. 4.1.1. The second term on the right-
hand side of Eq. �88� represents the energy flux due to the mass
transfer across the boundary x=0. A more detailed description of
the energy flux in the translating string is given in Sec. 4.2.

4.2 Energy Flux for a Translating String. The energy flux
describes the rate of energy transfer at a spatial point in a struc-
ture. The energy flux function for a stationary string is defined by
�30�

S�x,t� = − ux�x,t�ut�x,t� �89�

It is the product of the nondimensional transverse component of
the tension −ux�x , t�, exerted by the neighboring portion of the
string whose spatial coordinate is less than x on the string particle
at the spatial position x, and the corresponding velocity of the
string particle ut�x , t�. Hence, it is the rate of work done by the
portion of the string with the spatial coordinate less than x on the
string particle at the spatial position x. When this rate of work
done is positive, the energy flux is along the x direction. The
energy flux for a stationary string is the transfer of the rate of
work done by the transverse component of the tension at a fixed
spatial point along the string.

The energy flux function for a translating string is defined here
by
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S�x,t� = − ux

Du�x,t�
Dt

+ v�t���x,t�, x � �0,l�t�� �90�

where D /Dt=� /�t+v�t��� /�x� is the material derivative and
��x , t� is the vibratory energy density in Eq. �74�. The energy flux
function for a translating string differs from that for a stationary
string in that it is the sum of the transfer of the rate of work done
by the transverse component of the tension at a fixed spatial point
x along the string, −ux�Du�x , t� /Dt�, and a transfer of the vibra-
tory energy per unit time, v��x , t�, that results from the transla-
tional motion of the string. While the analysis below can be ex-
tended to the forced vibration problem, only the free vibration
problem �f�x , t�=N1�t�=N2�t�=0� is considered here to explain
the energy transfer mechanism within the control volume.

Substituting Eqs. �74�–�76� into Eq. �90� yields

S�x,t� = − �1 − v2�t��uxut −
1

2
v�t��1 − v2�t��ux

2 +
1

2
v�t�ut

2,

�91�
x � �0,l�t��

For instance, by use of ut�0, t�=0, the energy flux at x=0+ is

S�0+,t� = −
1

2
v�t��1 − v2�t��ux

2�0,t� �92�

Note that the reaction force at the boundary x=0 produces an
energy source at x=0, and S�0+, t� represents the energy flux from
the source x=0 to x�0. Similarly, by use of ut�l�t� , t�
+v�t�ux�l�t� , t�=0, the energy flux at x= l�t�− is

S�l�t�−,t� =
1

2
v�t�ux

2��lt�,t� �93�

and S�l�t�− , t� represents the energy flux from the source x= l�t�,
due to the reaction force at the boundary, to x� l�t�.

Differentiating Eq. �91� with respect to x and Eq. �74� with
respect to t, adding the two resulting expressions, and using the
homogeneous governing equation corresponding to Eq. �2� yield
the differential relation between the energy flux function and the
energy density:

���x,t�
�t

+
�S�x,t�

�x
= 0, x � �0,l�t�� �94�

which is of the same form as that for the stationary string in Ref.
�30�. Integrating Eq. �94� over x� �x1 ,x2�, where x1 ,x2� �0, l�t��,
yields

−�
x1

x2 ���x,t�
�t

dx = �S�x,t��x1

x2 �95�

Exchanging the order of integration and partial differentiation on
the left-hand side of Eq. �95� yields the integral relation between
the energy flux function and the energy density:

−
d

dt
�
x1

x2

��x,t�dx� = �S�x,t��x1

x2 �96�

where x1 ,x2� �0, l�t�� must be fixed. Equations �94� and �96� are
the differential and integral forms of energy conservation that de-
scribe the energy balance for a particular point and section of the
translating string, respectively. Equation �96� states that the rate of
change of the vibratory energy is equal to the net energy flux
across the boundaries. When x1 or x2 is a function of time, a
modified integral form needs to be derived. If x1 is fixed and x2 is
a function of time, while Eq. �95� still holds, the order of integra-
tion and partial differentiation in Eq. �95� cannot be interchanged.
Using Leibnitz’s rule yields

�
x1

x2 ���x,t�
�t

dx +
dx2

dt
��x2,t� =

d

dt
�
x1

x2

��x,t�dx� �97�

Substituting Eq. �97� into Eq. �95� yields the modified form of the
integral relation between the energy flux function and the energy
density:

−
d

dt
�
x1

x2

��x,t�dx� = �S�x,t��x1

x2 +
dx2

dt
��x2,t� �98�

Equation �87� for the free vibration problem can be obtained here
by setting x1=0 and x2= l�t� in Eq. �98� and using Eqs. �92� and
�93� in Eq. �98�:

dEcv�t�
dt

=
d

dt
�
0

l�t�

��x,t�dx� = −
1

2
v�t��1 − v2�t��ux

2�0,t� = S�0+,t�

�99�
Equation �99� states that the rate of change of the vibratory energy
within the control volume is equal to the energy flux into the
control volume across the boundary x=0, which includes the en-
ergy flux due to the mass transfer, v�t���0, t�= �1 /2�v�t��1
+v2�t��ux

2�0, t�, as shown in Eq. �88�, and the energy flux due to
the rate of work done by the transverse component of the tension
at the boundary x=0, −v�t�ux

2�0, t�, which is dEs�t� /dt in Eq. �88�.

4.3 Wave Propagation in the Translating String. While the
wave analysis below can be extended to the forced vibration prob-
lem, only the free vibration problem �f�x , t�=N1�t�=N2�t�=0� is
considered here to explain the energy growth mechanism at the
boundary x=0. The homogeneous solution of Eq. �7� is of the
general form in the x− t coordinate system:

u�x,t� = h
x −�
0

t

v���d� − t� + g
x −�
0

t

v���d� + t� ,

�100�
x � �0,l�t��

where h�·� and g�·� are arbitrary functions, representing rightward
and leftward propagating waves, respectively. Consider an infini-
tesimal portion of a leftward propagating wave of width �x, oc-
cupying the domain �0,�x� at time t and traveling with a velocity
1−v�t� �see Fig. 4�. At time t+�t, the infinitesimal wave reflects
from the left boundary and occupies the domain �0,�x��; this
reflected infinitesimal wave of width �x� propagates rightward.
Using the boundary condition u�0,r�=0, where r� �t , t+�t�, in
Eq. �100� yields

g
−�
0

�

v���d� + �� = − h
−�
0

�

v���d� − ��, r � �t,t + �t�

�101�
which means that the reflected wave has the same amplitude as
the incident wave; this explains the bounded displacement of the
freely vibrating string, as shown in Sec. 3.4. Since the propagating

Fig. 4 Compression of an infinitesimal wave at the boundary
x=0
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wave is nondispersive here, the amplitude of the wave front of the
reflected wave at time t, located at x=0, is the same as that of the
reflected wave at time t+�t, located at x=�x�:

h
−�
0

t

v���d� − t� = h
�x� −�
0

t+�t

v���d� − �t + �t��
�102�

Combining Eq. �101� at r= t and Eq. �102� yields

g
−�
0

t

v���d� + t� = − h
�x� −�
0

t+�t

v���d� − �t + �t��
�103�

Similarly, the amplitude of the waveback of the incident wave at
time t, located at x=�x, is the same as that of the incident wave at
time t+�t, located at x=0:

g
�x −�
0

t

v���d� + t� = g
−�
0

t+�t

v���d� − �t + �t��
�104�

Combining Eq. �101� at r= t+�t and Eq. �104� yields

g
�x −�
0

t

v���d� + t� = − h
−�
0

t+�t

v���d� − �t + �t��
�105�

Subtracting Eq. �103� from Eq. �105� yields

g
�x −�
0

t

v���d� + t� − g
−�
0

t

v���d� + t�
= h
�x� −�

0

t+�t

v���d� − �t + �t��
− h
−�

0

t+�t

v���d� − �t + �t�� �106�

The slope of the incident wave at x=0 at time t is

g�
−�
0

t

v���d� + t�
= lim

�x→0

g��x − �0
t v���d� + t� − g�− �0

t v���d� + t�
�x

�107�

which is related to the left-hand side of Eq. �106�; this is also the
slope of the incident wave with an infinitesimal width. Similarly,
the slope of the reflected wave at x=0 at time t+�t is

h�
−�
0

t+�t

v���d� − �t + �t�� = lim
�x�→0

�
h��x� − �0

t+�tv���d� − �t + �t�� − h�− �0
t+�tv���d� − �t + �t��

�x�

�108�

which is related to the right-hand side of Eq. �106�; this is also the
slope of the reflected wave with an infinitesimal width. When �t
approaches zero, Eq. �108� becomes

h�
−�
0

t

v���d� − t�
= lim

�x�→0

h��x� − �0
t v���d� − t� − h�− �0

t v���d� − t�
�x�

�109�

Dividing Eq. �106� by �x yields

g��x − �0
t v���d� + t� − g�− �0

t v���d� + t�
�x

=
h��x� − �0

t+�tv���d� − �t + �t�� − h�− �0
t+�tv���d� − �t + �t��

�x�

�
�x�

�x
�110�

When �t approaches zero, �x and �x� approach zero and Eq.
�110� becomes, after using Eqs. �107� and �109�,

lim
�x,�x�→0

�x�

�x
=

g��− �0
t v���d� + t�

h��− �0
t v���d� − t� �111�

The left-hand side of Eq. �111� represents the ratio of the width of
the reflected wave to that of the incident wave, and the right-hand
side of Eq. �111� represents the ratio of the slope of the incident
wave to that of the reflected wave. Equation �111� shows that the
width ratio of the reflected wave to the incident wave is almost
inversely proportional to their slope ratio.

Define the ratio of compression � at the boundary x=0 as

� =
h��− �0

t v���d� − t�
g��− �0

t v���d� + t� �112�

Consequently, by Eq. �111�,

�x�

�x
�

1

�
�113�

when �x and �x� are small enough. Using ut�0, t�=0 in Eq. �100�
and comparing the resulting expression to Eq. �112� yield

� =
1 − v�t�
1 + v�t�

�114�

Using Eqs. �74�–�76� with x=0 yields the vibratory energy of
the incident wave g�x−�0

t v���d�+ t� within the spatial domain
�0,�x�:

Ei�t� =
1

2
�x��1 − v�t��g�
−�

0

t

v���d� + t�
+ v�t�g�
−�

0

t

v���d� + t��2

+
1

2
�xg�2
−�

0

t

v���d� + t�
= �xg�2
−�

0

t

v���d� + t� �115�

Similarly, the vibratory energy of the reflected wave within the
domain �0,�x�� is

Er�t + �t� = �x�h�2
−�
0

t+�t

v���d� − �t + �t�� �116�

The average rate of change of the vibratory energy of the infini-
tesimal wave during reflection from the boundary x=0 in the time
duration �t , t+�t� is obtained by using Eqs. �115�, �116�, �112�,
and �113�:
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Er�t + �t� − Ei�t�
�t

=
�� − 1��xg�2�− �0

t v���d� + t�
�t

�117�

Using Eq. �114� in Eq. �117� and letting �t→0 yield the exact
rate of change of the vibratory energy of the infinitesimal wave
during reflection from the left boundary at time t:

dEleft�t�
dt

= lim
�t→0

Er�t + �t� − Ei�t�
�t

=
v�t��v�t� − 1�

v�t� + 1

�g�2�− �0
t v���d� + t� �118�

The relation between the slope of the incident wave at x=0, g��
−�0

t v���d�+ t�, and the slope of the string at x=0, ux�0, t�, is es-
tablished by first differentiating Eq. �100� with respect to x at x
=0:

ux�0,t� = h�
−�
0

t

v���d� − t� + g�
−�
0

t

v���d� + t�
�119�

Using Eqs. �112� and �114� in Eq. �119� yields

g�
−�
0

t

v���d� + t� =
1 + v�t�

2
ux�x,0� �120�

Substituting Eq. �120� into Eq. �118� yields

dEleft�t�
dt

= −
1

2
v�t��1 − v2�t��ux

2�0,t� �121�

When v�t��0, the velocity of the incident wave towards the
left boundary is along the direction of the relative velocity of the
string to the boundary, the ratio of compression is greater than 1
by Eq. �114�, the width of the reflected wave is smaller than that
of the incident wave by Eq. �113�, and the slope of the reflected
wave is greater than that of the incident wave by Eq. �112�.
Hence, the wave is compressed during reflection from the left
boundary, and the vibratory energy increases by Eq. �117�. Con-
versely, when v�t��0, the ratio of compression is less than 1, the
width of the reflected wave increases, and the slope of the re-
flected wave is smaller than that of the incident wave. Hence, the
wave is flattened during reflection from the left boundary and the
vibratory energy decreases.

Following the similar procedure, the rate of change of the vi-
bratory energy of an infinitesimal wave during reflection from the
right boundary x= l�t� is

dEright�t�
dt

= 0 �122�

Since the translating string has no relative motion to the right
boundary, the ratio of compression is 1, and the width and slope of
the reflected wave from the right boundary are the same as those
of the incident wave. The vibratory energy of the wave remains
unchanged during reflection from the right boundary.

The displacement of the translating string u�x , t� comprises two
trains of infinitesimal waves, one propagating rightward with a
velocity 1+v�t� and one leftward with a velocity 1−v�t�. When
there is a relative motion between the string and a boundary, and
the velocity of an incident infinitesimal wave at the boundary is
along �opposite to� the direction of the relative velocity of the
string to the boundary, the ratio of compression is greater �less�
than 1, the reflected wave from the boundary is compressed �flat-
tened�, and the vibratory energy of the wave increases �decreases�
during reflection from the boundary. The vibratory energies of the
infinitesimal waves in the internal spatial domain of the string
remain unchanged. Consequently, the rate of change of the vibra-
tory energy of the string within the control volume, as shown in
Eq. �87� with f�x , t�=N1�t�=N2�t�=0, is the sum of the rates of

change of the vibratory energies at the two boundaries in Eqs.
�121� and �122�.

When v�t�= l̇�t�� �−1,0�, i.e., the length of the translating
string gets shorter, by Eq. �87� with f�x , t�=N1�t�=N2�t�=0, and
Eqs. �92�, �121�, and �122�, one has

dEcv�t�
dt

= S�0+,t� =
dEleft�t�

dt
= −

1

2
v�t��1 − v2�t��ux

2�0,t� � 0

�123�
The vibratory energy of the string within the control volume in-
creases because the propagating waves are compressed at the left
boundary x=0 and there is a continuous energy flux into the con-
trol volume across the boundary x=0. This unstable shortening
string behavior is characterized by the bounded displacement and
monotonically increasing vibratory energy. Furthermore, as the
length of the string gets shorter, the vibratory energy density in-
creases at a higher rate than the vibratory energy. It is noted that
the positive energy flux across the boundary x=0 attributes to �1�
a positive rate of work −vux

2�0, t� done by the transverse compo-
nent of the tension at x=0 and �2� a modification coefficient �1
−v2� /2 due to the mass transfer across x=0. As the modification
coefficient is greater than 0 and less than 1 for a subcritical speed,
the effect of mass transfer tends to prevent the vibratory energy of
the string from increasing and decreasing during retraction and
extension, respectively.

5 Examples and Discussion
A computer program is written using MATLAB following the

procedures described in Sec. 3. It provides the exact free and
forced responses of the translating string with an arbitrary move-
ment profile, and general initial conditions and external excitation.
A flowchart for the program using the direct wave method is
shown in Fig. 5. The inverse function w��� in Eqs. �69�, �71�, and
�73� is obtained using a bisection root-finding algorithm.

5.1 Free Response of an Elevator Cable During Upward
Movement. Consider first the free response of a hoist cable in an
elevator, traveling from the first floor to the 46th floor in a 54-
story building �16�. The bending stiffness of the cable and the
tension change due to the weight and acceleration of the cable are

Fig. 5 Flowchart for calculating the free and forced responses
of a translating string with arbitrarily varying length
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neglected here. The lateral vibration of the cable is hence gov-
erned by Eq. �2�. The tension in the cable is P=9388.2 N and the
mass per unit length of the cable is �=1.005 kg /m. The upward
movement profile is divided into seven regions. In each region i
�i=1,2 , ¯ ,7�, the length of the cable is given by a polynomial:

L�T� = C0
�i� + C1

�i��T − T�i−1�� + C2
�i��T − T�i−1��2 + C3

�i��T − T�i−1��3

+ C4
�i��T − T�i−1��4 + C5

�i��T − T�i−1��5 �124�

where Ti−1	T	Ti, and Ti and Cm
�i� �m=0,1 , ¯ ,5� are given in

Table 1. The initial and final lengths of the cable are 162 m and
21 m, respectively, and the total travel time is T7=42 s. The initial
displacement of the cable is

A�X� = �0.25X/36 m 0 � X 
 36 m

− 0.25�X − 162�/126 m 36 m 
 X � 162 m
�
�125�

and the initial velocity is zero. There are no distributed external
force and boundary excitation.

The displacement of the cable at a fixed spatial point, X
=10 m, from 0 s to 42 s is shown in Fig. 6. The exact response
here is compared to those obtained using the spatial discretization
methods in Ref. �16� with 10-term and 50-term approximations. It
is seen that the response from the 50-term approximation is es-
sentially the same as the exact response for the total time duration
considered, and a large number of terms are needed in the spatial
discretization methods to capture the shortening cable behavior.
The results also show that the time duration between two consecu-
tive peaks, as they pass through X=10 m, becomes smaller as
time goes on, which results from the increase of the instantaneous
fundamental frequency of the cable, ��P /�L2�t�, during retrac-

tion. The time average of the local velocity of the cable at the
spatial point X=10 m, reflected as the average slope in Fig. 6,
representing the vibration intensity at X=10 m, tends to increase
with time since the peak gets sharper. However, the time average
of the magnitude of the displacement of the cable at the spatial
point X=10 m increases first and then decreases. The displace-
ment of the cable in Fig. 6 is bounded by the maximum initial
displacement 0.25 m, as predicted by Eq. �62�. As the elevator
approaches the top of its hoistway, the vibratory energy density
increases dramatically, as indicated in Sec. 4.3, and the vibration
problem becomes most severe.

5.2 Response of an Elevator Cable Under Boundary Exci-
tation During Upward Movement. Consider a moving elevator
cable with the same initial length, tension, and mass per unit
length as in Sec. 5.1. The transport velocity is V�T�=−8.1 m /s,
and the total travel time is 30 s. The initial displacement and
velocity are zero. The boundary displacement at x=0 is U�0,T�
=0.005 sin�9.97T� m, and there are no distributed external force
and boundary excitation at x= l�t�. The forced responses at a fixed
spatial point X=10 m from 0 s to 30 s, using both the transforma-
tion method and the direct wave method in Sec. 3.5, are shown in
Fig. 7. Since the transformation method is computationally expen-
sive as it involves numerical evaluation of a double integral of
Q�� ,�� introduced by the transformation, only 201 points are used
for the time duration T� �0,30� s in calculating and plotting the
response with the transformation method, and 1001 points are
used for the same time duration with the direct wave method. The
data points from the transformation method coincide with the cor-
responding points from the direct wave method, and the two
methods yield the same results.

Table 1 Upward movement profile regions of an elevator cable and their polynomial
coefficients

Region
i

Ti
�s�

C0
�i�

�m�
C1

�i�

�m/s�
C2

�i�

�m /s2�
C3

�i�

�m /s3�
C4

�i�

�m /s4�
C5

�i�

�m /s5�

1 1.33 162.00 0 0 0 −0.106 0.0316
2 6.67 157.38 −2.252 −0.33 0 0 0
3 8 155.51 −2.748 −0.33 0 0.106 −0.0316
4 30 125.99 −5 0 0 0 0
5 31.33 59.99 −5 0 0 0.106 −0.0316
6 36.67 30.48 −2.748 0.33 0 0 0
7 42 28.60 −2.252 0.33 0 −0.106 0.0316

Fig. 6 Free response of a moving elevator cable at X=10 m
from 0 s to 42 s: exact solution „solid line…, 10-term approxima-
tion „dot…, and 50-term approximation „cross…

Fig. 7 Response of a moving elevator cable under boundary
excitation at X=10 m from 0 s to 30 s: transformation method
„dot… and direct wave method „solid line…
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5.3 Parametric Instabilities in a Translating String With
Sinusoidally Varying Length. The long-time behavior and the
energy growth of a stationary string with a sinusoidally moving
boundary were studied in Ref. �21�. The long-time behavior and
parametric instabilities of a translating string with sinusoidally
varying length are studied here.

Consider a translating string with the dimensionless velocity
v�t�=0.2 sin��t�, where �=� is the dimensionless fundamental
frequency of the translating string with the average length l�0�
=1 and zero average velocity. The dimensionless initial displace-
ment is

a�x� = �x/0.22 0 � x 
 0.22

− �x − 1�/0.78 0.22 
 x � 1
� �126�

and the initial velocity is zero. There are no distributed external
force and boundary excitation.

The dimensionless displacement of the translating string at a
fixed spatial point x=0.1 from t=0 to 16 is shown in Fig. 8. The
vibration observed at x=0.1 evolves into a shock as time goes on,
passing through the spatial point x=0.1. Unlike the case in Fig. 6,
the time duration between two consecutive peaks remains almost
unchanged here, since the length of the string changes sinusoi-
dally in a small region around l�0� and the corresponding instan-
taneous, dimensionless fundamental frequency of the string � / l�t�
varies only slightly. In contrast, the slopes of these peaks increase
dramatically with time.

The dimensionless displacements of the string at the times t
=4, 10, and 16 are shown as dashed, dotted, and solid lines, re-
spectively, in Fig. 9. It is observed that all the waves are attracted
to a small region around a point at the final time, and the attracting

point moves along the string with a downstream velocity 1+v�t�
and upstream velocity 1−v�t�. The vibratory energy of the string
accumulates continuously as the shock reflects from the boundary
x=0, where the string has a relative motion to the boundary, as
illustrated in Sec. 4.3.

In fact, it is found numerically that when �=n� �n
=1,2 ,3 , . . . �, which is the nth dimensionless natural frequency of
the string with the averaged length and velocity, the similar be-
havior occurs. For instance, when n=5, the dimensionless dis-
placements of the string at the times t=4, 10, and 16 are shown as
dashed, dotted, and solid lines, respectively, in Fig. 10. The vibra-
tion evolves into square waves traveling along the string. It is
observed that when �=n�, there are n abrupt changes of the
displacement along the string, where shocks are developed and the
vibratory energy is concentrated and accumulated.

The unstable phenomenon observed here is considered as the
parametric resonance for the distributed-parameter system consid-
ered here, because some coefficients of the governing equation in
Eq. �2� vary periodically with time and so does its spatial domain
in the present case.

6 Conclusions
The exact response of a translating string with constant tension

and arbitrarily varying length is obtained for general initial con-
ditions and external excitation using the method of characteristics.
Compared to the spatial discretization methods, the new wave
method presented here is more accurate and efficient, especially
for a shortening or unstable string, and it provides physical insight
into wave propagation. The method is, however, limited to the
case where the standard form of the governing equation does not
contain the zeroth and first order partial derivatives, which means
that the propagating wave is nondispersive.

The least upper bound of the displacement of the freely vibrat-
ing string depends only on the initial conditions. The direct wave
method is more efficient than the transformation method in han-
dling the nonhomogeneous boundary conditions. The energy flux
function for a translating string is introduced; the relation between
the energy flux function and the vibratory energy density is pre-
sented in the differential, integral, and modified integral forms,
and the energy growth mechanism of a shortening string is ex-
plained using the modified integral form. A new wave method is
developed to calculate the rate of change of the vibratory energy
within the control volume and to explain the energy growth
mechanism associated with wave compression at a boundary. A
new parametric instability phenomenon is discovered for the
translating string with periodically varying length. When the
length of the string varies at the nth natural frequency of the string
with the averaged length and velocity, n shocks characterized by
the bounded displacement and unbounded energy are developed.

Fig. 8 Free response of a translating „v„t…=0.2 sin„�t…… string
with sinusoidally varying length at x=0.1

Fig. 9 Free response of a translating „v„t…=0.2 sin„�t…… string
with sinusoidally varying length at t=4 „dashed line…, 10 „dotted
line…, and 16 „solid line…

Fig. 10 Free response of a translating „v„t…=0.2 sin„5�t……
string with sinusoidally varying length at t=4 „dashed line…, 10
„dotted line…, and 16 „solid line…
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Analytical Solution of the
Perturbed Magnetic Fields of
Plates Under Tensile Stress
Development of magnetism based nondestructive testing technology and the Microelec-
tronic mechanical system require accurate computation of perturbed magnetic fields gen-
erated by mechanical stress. In this paper, based on the linearized magnetoelastic theory,
the governing equations and continuity conditions to determine the perturbed magnetic
fields were formulated for the case of weak external magnetic fields such as the earth’s
magnetic field. Under those weak magnetic fields, the effect of the magnetic fields on
mechanical deformation was neglected. As a result, the interaction between the deforma-
tion and the magnetic field was simplified. The effect of deformation on the perturbed
magnetic field was taken into account by introducing the displacement gradient into the
boundary conditions that the perturbed field should satisfy. As examples, analytic solu-
tions of the perturbed magnetic field of infinite plates with and without a round hole,
which are subjected to tensile stresses and weak external magnetic fields, were obtained
by the approach presented. The results show that the perturbed magnetic fields induced
by stress are three orders less in magnitude of intensity than that of magnetic fields
without stress, and some prominent local features such as that has more peaks and decays
more rapidly in the radial direction than the case of stress free that are predicted by the
solutions. �DOI: 10.1115/1.2870266�

Keywords: stress, magnetic fields, perturbed, magnetoelasticity

1 Introduction
In magnetism based nondestructive testing technologies �1� and

noncontact measurement of stress distribution �2�, the effect of
mechanical stress on the magnetic fields is an important topic to
the development of those technologies. Analysis of the perturbed
magnetic fields generated by a tension fault was regarded as a
possible way to understand what happen in the deep earth before
strong earthquakes �3�. In the microelectronic mechanical system
�MEMS�, the effect of the strain and stress on magnetic thin films,
which are extensively used in MEMS and other devices, becomes
crucial problem to ensure the device is working functionally �4�.

The interaction between magnetic fields and elastic solids was
particularly treated by Brown �5�. Some theoretical models �6–8�
are available to describe the macrobehaviors of ferromagnetic ma-
terials to some extent. Among them, Pao and Yeh’s model �6�
provides a linearized magnetoelasticity theory and is widely used
to attack the interaction problems. More recently, new progress
has been made. The theory for the equilibrium response of mag-
netoelastic membranes �9� and the equilibrium equations for large
magnetoelastic deformations �10� have been formulated for the
applications and analysis of elastomers endowed with magnetic
properties by the embedding of distributions of ferrous particles,
which are used as smart materials in devices such as that for
controlling the damping characteristics of vibration absorbers.

This paper focuses on the perturbed magnetic field induced by
mechanical stress. Based on Pao and Yeh’s linearized theory, Yeh
�11� obtained the perturbed magnetic field generated by a line
mechanical singularity in a magnetized elastic half plane. Huang
and Wang �12� derived a complete solution of the magnetoelastic-
ity in the magnetic half space. Under weak magnetic fields, the
stress induced perturbed magnetic field was investigated �13�, and

the perturbed magnetic field of a half plane subjected to a point
force has been obtained analytically. In this paper, an approach to
obtain the perturbed magnetic fields induced by the deformation
due to the mechanical loads is presented, and the analytic solution
of the perturbed magnetic field of an infinite plate with a round
hole is derived by the approach.

Section 2 presents the equations to solve the rigid magnetic
fields and the perturbed fields. Particular attention is paid to the
case of weak internal magnetic fields. The continuity conditions
the perturbed fields should satisfy are derived in this section,
which are necessary to solve the boundary-value problem. In Sec.
3, the perturbed magnetic fields of an infinite plate subjected to
tensile stress and external magnetic field are solved as an example
to show how the proposed approach is implemented, and to indi-
cate that the displacement gradient plays an important role to the
initiation of the perturbed magnetic fields. The perturbed magnetic
fields of an infinite plate with a round hole are solved in Sec. 4,
the results are discussed in Sec. 5, and some conclusions are
drawn in Sec. 6.

2 Interaction Between Deformation and Magnetic
Fields

2.1 Rigid Magnetic Fields. Without deformation, the rigid
stationary magnetic fields of an isotropic magnetoelastic solid oc-
cupying a spatial domain � and subjected to an external magnetic
field can be described by the magnetic flux density B−, the field
intensity H−, and the magnetized intensity M− in �, and B+, H+,
and M+=0 in the free space where might be air or vacuum. These
magnetic quantities are governed by the Ampere law and the
Gauss law as

eijkHk,j = 0, Bi,i = 0 �1�

where eijk is the permutation symbol and i, j, k=1,2 ,3 for the
three-dimensional problems. The “,” in subscripts denotes the par-
tial derivative with respect to the spatial coordinates, for example,
Hk,j =�Hk /�xj. Whether in � or in the free space, Eq. �1� must be
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held; therefore, the superscripts “�” and “�” of the quantities are
intentionally omitted for briefness. Hence, the quantities without
superscripts “�” and “�” in Eq. �1� and in the following part of
this paper denote ones both in � and in the free space. The con-
stitutive laws for the magnetic fields are

Mi = �Hi, Bi = �0�Hi + Mi� = �0�rHi, �r � 1 + � �2�

where � is the magnetic susceptibility of the material, �04�
�10−7 H /m is the universal constant, and �r the relative mag-
netic permeability. On the boundary of �, the fields satisfy the
following continuity conditions:

Ni�Bi
+ − Bi

−� = 0 �3a�

eijkNj�Hk
+ − Hk

−� = 0 �3b�

where Ni are the three components of the normal vector of the
boundary.

Introducing magnetic scalar potential � and defining H=−��,
where � is the Nabla operator, then Eq. �1� can be transferred into
two Laplace equations for the free space and the material space,
respectively,

�2�+ = 0, �2�− = 0 �4�

2.2 Effect of Magnetic Field on Mechanical Deformation.
The deformation of the solid considered in Sec. 2.1 consists of
two parts. One is caused by the applied mechanical loads and the
other by the Maxwell forces from the external magnetic field.

More complicated, the deformation of the solid generates per-
turbed magnetic fields in the material space and in the free space.
Similar to the rigid situation discussed in Sec. 2.1, the perturbed
fields can be described by the magnetic flux density b−, the mag-
netic field intensity h−, and the magnetized intensity m− in the
material space �, and b+, h+, and m+=0 in the free space. As the
gradient of displacements is assumed small, according to the lin-
earlized theory in Ref. 6, the total magnetic fields are superposi-
tion of the rigid magnetic fields and the perturbed fields, i.e.,

Bi
total = Bi + bi, Hi

total = Hi + hi, Mi
total = Mi + mi �5�

The total magnetic quantities should satisfy Eq. �1�; this leads to
the governing equations of the perturbed fields

eijkhk,j = 0, bi,i = 0 �6�

The equilibrium equation under mechanical loads and magnetic
fields is �11�

tij,i + �0�MiHj,i + Mihj,i + miHj,i� + f j = 0 �7�

where tij is the magnetomechanical stress tensor and f j the me-
chanical body force per unit volume. Neglecting the effect of
magnetostriction, the constitutive equations are �6�

tij =
�0

�
MiMj + 	ij + �0�Hjmi + Himj� �8�

mi = �hi, bi = �0�hi + mi� = �0�rhi �9�

where

	ij = 
uk,k�ij + G�ui,j + uj,i� �10�

is the Cauchy stress tensor. 
 and G are the Lamè constants, and
�ij is the Kronecker delta symbol. Substituting Eqs. �8�–�10� into
Eq. �7� and using Eqs. �1� and �6�, omitting the mechanical body
force, it yields

Guj,ii + �
 + G�ui,ji + 2�0��HiHj,i + hiHj,i + Hihj,i� = 0

Considering the condition �bi� / �Bi��1 and �hi� / �Hi��1, it can be
further simplified as

uj,ii +
1

1 − 2
ui,ji +

2�Bi

G�r
hj,i = 0 �11�

Here, the third term in the left side of the equation represents
the effect of the Maxwell forces. It has been shown that for non-
soft ferromagnetic material when the external magnetic field B is
of magnitude of the earth’s magnetic field �ab out 40 A /m�, the
effect of the Maxwell forces on displacement can be neglected
�11,13�. Therefore, the third item in Eq. �11� can be neglected and
thus Eq. �11� is reduced to the Lamè–Navier’s equation, which is
commonly seen in textbooks on the theory of elasticity.

2.3 Perturbed Magnetic Fields Induced by Deformation.
Considering a particle in a magnetoelastic solid originally located
at ai�i=1,2 ,3�, it displaces ui to xi, then its position after the
displacement is

xi = ai + ui �12�
The geometry equations of the boundary of the material space

� before and after the deformation can be written as

F�a1,a2,a3� = 0, f�x1,x2,x3� = 0 �13�

Let N and n be the normal vectors of the boundary surfaces before
and after the deformation, respectively, their components are cal-
culated by

Ni =
�F

�ai
� �F

�ak

�F

�ak
�−1/2

� K
�F

�ai
, ni =

�f

�xi
� �f

�xk

�f

�xk
�−1/2

� K�
�f

�xi

�14�
Note that

f�x1,x2,x3� = F�a1�xi�,a2�xi�,a3�xi�� = 0

and assuming that the magnitude of the outward normal vectors
keeps unchanged before and after the deformation, i.e.,K�=K,
from Eq. �14�, the normal vector of the boundary surface after the
deformation is

ni = K�
�f

�xi
= K�

�F

�am

�am

�xi
= Nm��mi −

�um

�xi
� = Ni − Nmum,i

�15�

Replacing the quantities Ni,Bi, and Hi in Eqs. �3a� and �3b� by
ni, Bi

total, and Hi
total, respectively, and substituting Eqs. �5� and �15�

into Eq. �3a�, we have

Ni�bi
+ − bi

−� + Ni�Bi
+ − Bi

−� − Nmum,i�Bi
+ − Bi

−� − Nmum,i�bi
+ − bi

−� = 0

Note that the second item in the left side of the equation is the
boundary condition, Eq. �3a�, in the rigid body state; it should be
zero. The fourth term is a second order infinitesimal quantity,
which can be neglected, thus have

Ni�bi
+ − bi

−� = Nmum,i�Bi
+ − Bi

−� �16a�

Substituting Eqs. �5� and �15� into Eq. �3b�, we have

eijkNj�hk
+ − hk

−� = eijkNmum,j�Hk
+ − Hk

−� �16b�

Equations �16a� and �16b� are the boundary conditions the per-
turbed magnetic field should satisfy. Equations �16a� and �16b�
indicate that the displacement gradient, um,i, plays a key role to
initiate the perturbed magnetic field. In other words, the perturbed
magnetic field does not arise when the displacement gradient on
the boundary is zero.

For plane problems, the continuity conditions �16a� and �16b�
can be expressed in the planar polar coordinate system as

nr�h�
+ − h�

−� − n��hr
+ − hr

−� = �r�H�
+ − H�

−� − ���Hr
+ − Hr

−�
�17a�

nr�br
+ − br

−� − n��b�
+ − b�

−� = �r�Br
+ − Br

−� + ���B�
+ − B�

−� �17b�

where

�r = nr
�ur

�r
+ n�

�u�

�r
, �� =

1

r
�nr

�ur

��
+ n�

�u�

��
+ n�ur − nru��
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Similar to the rigid magnetic fields in Sec. 2.1, we introduce the
perturbed magnetic scalar potentials �+ and �− for the free space
and the material space, respectively. By defining h+=−��+ and
h−=−��−, Eq. �6� is reduced to

�2�+ = 0, �2�− = 0 �18�
Equations �16a�, �16b�, and �18� are the equations used to deter-
mine the perturbed fields.

In summary, there are three main steps to obtain the perturbed
magnetic field.

Step 1. Solving Eq. �4� to obtain the rigid magnetic field B and
H.

Step 2. Solving the Lamè–Navier equation to obtain the dis-
placement field u and the displacement gradient on the boundary.

Step 3. Solving Eq. �18� with Eqs. �16a� and �16b� to obtain the
perturbed magnetic field b and h.

3 Perturbed Magnetic Fields of a Plate Subjected to
Tensile Stress

Figure 1 shows an infinite plate subjected to tensile stress p and
to an external magnetic filed specified by magnetic flux density
B0. The thickness of the plate is 2a.

The rigid state magnetic field of the problem is

By
+ = B0, Hy

+ = B0/�0, My
+ = 0 �in the free space�

By
− = B0, Hy

− =
B0

�0�r
, My

− =
�B0

�0�r
�in the plate�

All the other magnetic quantities are zero.
The displacement components of the problem are ux= px /E and

uy =−py /E, respectively. Here, E and  are Young’s modulus and
Poisson’s ratio of the plate. The perturbed magnetic field satisfies
the governing equation �18� and the boundary conditions �16a�
and �16b�. On the boundary y= �a, it gives

hx
+ − hx

− = −
�B0

�0�r

�uy

�x
, by

+ − by
− = 0

Because there is no displacement gradient ��uy /�x=0�, the right
hand term of the first equation is zero and subsequently there is no
perturbed magnetic field induced by the stress p.

4 Perturbed Magnetic Fields of an Infinite Plate With
a Round Hole

4.1 Displacement Solutions. Figure 2 shows an infinite plate
with a centered round hole. The radius of the hole is a. The plate
is subjected to tensile stress p and external magnetic field B0.

For convenience, the planar polar coordinates �� ,r� are used.
The stress solution of this problem can be found in many text-
books of elasticity. From the stress solution and Hooke’s law, the
displacement components can be integrated from the geometry
equations as

ur =
p

E
	�1 − 

2
+

1 + 

2
cos 2��r + �1 + 

2
+ 2 cos 2��a2

r

+
1 + 

2
cos 2�

a4

r3
 + A sin � + B cos �

u� =
p

E
	− �1 − �

a2

r
−

1 + 

2
r − �1 + �

a4

r3
sin 2� + A cos �

− B sin � + Cr

where r=�x2+y2, E and  are Young’s modulus and Poisson’s
ratio of the plate, respectively. In order to find the integration
constants A, B, and C, use the symmetry conditions of the prob-
lem

�ur��=0 = �ur��=�, �ur��=−�/2 = �ur��=�/2

Then have B=0 and A=0. Besides, on the line of �=0, the vertical
displacement component u�=0, this leads to C=0. Thus, the dis-
placement solution is

ur =
p

E
	�1 − 

2
+

1 + 

2
cos 2��r + �1 + 

2
+ 2 cos 2��a2

r

+
1 + 

2
cos 2�

a4

r3

u� =

p

E
	− �1 − �

a2

r
−

1 + 

2
r − �1 + �

a4

r3
sin 2�

4.2 Rigid Magnetic Field Solutions. In order to compute the
perturbed magnetic fields, the rigid magnetic fields must be com-
puted first. The general solution of Eq. �4� is

��r,�� = �A0 + B0 ln r��C0 + D0�� + �
n=1

�

�Anrn + Bnr−n�

��Cn cos n� + Dn sin n��

When r→�, the magnetic scalar potential has a limited value
�−=−�B0 /��r cos �, where �=�0�r. This requires that A0=B0
=Dn=0. When n=1, then

�− = A1C1r cos � +
B1C1

r
cos � = −

B0

�
r cos � +

F1

r
cos �

�19�

On the boundary of the hole �r=a�, the continuity conditions re-
quire �+=�−. This implies that �+ has a form of

�+ = − F2r cos � +
F3

r
cos � �20�

Here, F1, F2, and F3 are constants need to be found. If the point at
r=0 is picked as the reference potential point, that is, �+=0 at

Fig. 1 Infinite plate subjected to tensile stress p and magnetic
field B0

Fig. 2 Infinite plate with a hole subjected to stress p and mag-
netic field B0
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r=0, this leads to F3=0.
The continuity conditions, Eqs. �3a� and �3b�, suggest that as

r=a, �+=�− and �0���+ /�r�=����− /�r�, it results that

F1 = −
� − �0

� + �0
a2B0

�
, F2 =

2B0

� + �0

Then the potentials are

�+�r,�� = −
2B0

�0��r + 1�
r cos � �r � a�

�−�r,�� = −
B0

�0�r
r cos � −

�r − 1

�r + 1
·

B0

�0�r

a2

r
cos � �r � a� �

and the field intensities are

H+�r,�� =
2B0

�0��r + 1�
�er cos � − e� sin ��

H−�r,�� = er�1 −
�r − 1

�r + 1
·

a2

r2 � B0

�0�r
cos �

+ e��− 1 −
�r − 1

�r + 1
·

a2

r2 � B0

�0�r
sin �

In the Descartes coordinate system, the potentials and intensities
have forms of

�+�x,y� = −
2B0

�0��r + 1�
x �r � a�

�−�x,y� = −
B0

�0�r
x −

�r − 1

�r + 1
·

B0

�0�r

a2x

r2 �r � a� �

Hx
+ = −

��+

�x
=

2B0

�0��r + 1�

Hy
+ = −

��+

�y
= 0 � �r � a� �21�

Hx
− = −

��−

�x
=

B0

�0�r
−

�r − 1

�r + 1
·

B0

�0�r
·

a2�x2 − y2�
�x2 + y2�2

Hy
− = −

��−

�y
= −

�r − 1

�r + 1
·

B0

�0�r
·

2a2xy

�x2 + y2�2
� �r � a�

�22�
Equation �21� indicates that in the hole there is a uniform mag-
netic field.

4.3 Perturbed Magnetic Fields Induced by the
Deformation. The perturbed magnetic scalar potentials �+ and �−

are governed by Eq. �18�. For this problem, the continuity condi-
tions, Eqs. �17a� and �17b�, were used for convenience. For the
boundary r=a, the components of the normal vector are nr=−1
and n�=0, thus Eqs. �17a� and �17b� become

h�
+ − h�

− =
�ur

�r
�H�

+ − H�
−� −

1

r
� �ur

��
− u���Hr

+ − Hr
−�

br
+ − br

− =
�ur

�r
�Br

+ − Br
−� +

1

r
� �ur

��
− u���B�

+ − B�
−� � �r = a�

�23�

Note that B+=�0H+, B−=�0�rH
−, b+=�0h+, b−=�0�rh

−, and
substituting the solved ur, H�

+, H�
−, Hr

+, Hr
− into Eq. �23�, then have

(a)

(b)

Fig. 3 The rigid magnetic field intensities: „a… Hx
− and „b… Hy

−

(a)

(b)

Fig. 4 The perturbed magnetic field intensities: „a… hx
− and „b…

hy
−
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��+

��
−

��−

��
= −

1

E
�7 + 3� · ��r − 1

�r + 1
�pa ·

B0

�0�r
· sin 2� · cos �

��+

�r
− �r

��−

�r
=

1

E
�7 + 3� · ��r − 1

�r + 1
�p ·

B0

�0
· sin 2� · sin � � �r = a�

�24�
The general solutions of Eq. �18� are

�+�r,�� = �a0
+ + b0

+ ln r��c0
+ + d0

+�� + �
n=1

�

�an
+rn + bn

+r−n�

��cn
+ cos n� + dn

+ sin n��

�−�r,�� = �a0
− + b0

− ln r��c0
− + d0

−�� + �
n=1

�

�an
−rn + bn

−r−n�

��cn
− cos n� + dn

− sin n��

Because of the symmetry, � must be an even function of �. This
suggests that d0

�=dn
�=0, thus

�+�r,�� = �a0
+ + b0

+ ln r� + �
n=1

�

�an
+rn + bn

+r−n�cos n�

�−�r,�� = �a0
− + b0

− ln r� + �
n=1

�

�an
−rn + bn

−r−n�cos n�

By using the same reference potential point as used in the rigid
case, we have b0

+=bn
+=a0

+=0. In the plate, when r→� the per-
turbed field vanishes; this requires that a0

−=b0
−=an

−=0, so

�+�r,�� = �
n=1

�

an
+rn cos n� �25�

�−�r,�� = �
n=1

�

bn
−r−n cos n� �26�

Substituting Eqs. �25� and �26� into Eq. �24�, finally the potentials
are

�+�r,�� = 0,

�−�r,�� = −
1

E
�7 + 3�p ·

B0

�0�r
·

�r − 1

�r + 1
·

a4

6
·

1

r3 cos 3�

It indicates that a perturbed magnetic field is generated in the plate
by the stress but not in the hole. In Descartes coordinate system,
the potential in the plate has form of

�−�x,y� = −
1

E
�7 + 3�p ·

B0

�0�r
·

�r − 1

�r + 1

·
a4

6
	4

x3

�x2 + y2�3 − 3
x

�x2 + y2�2

By hx

−=−���− /�x� and hy
−=−���− /�y�, the intensities of the per-

turbed magnetic field are

hx
− = −

1

E
�7 + 3�p ·

B0

�0�r
·

�r − 1

�r + 1
·

a4

6
· � 3

r4 − 24
x2

r6 + 24
x4

r8�
�27a�

hy
− =

1

E
�7 + 3�p ·

B0

�0�r
·

�r − 1

�r + 1
·

a4

6
�12

xy

r6 − 24
x3y

r8 � �27b�

(a)

(b)

Fig. 5 Comparison of intensities along the hole boundary „r
=a…: „a… Hx

− and hx
−; „b… Hy

− and hy
−

(a)

(b)

Fig. 6 The rigid intensities for various r /a ratios: „a… Hx
− and „b…

Hy
−
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As shown by Eqs. �27a� and �27b� the intensities of the per-
turbed magnetic field depend on Young’s modulus E and Pois-
son’s ratio  of the plate, and is proportional to the applied stress
p. Obviously if there is no hole �a=0� or no stress �p=0�, the
perturbed magnetic field will not arise. This is consistent with that
discussed in Sec. 3.

5 Results and Discussion

5.1 Comparison Between the Rigid and the Perturbed
Fields. The following parameters were used to calculate the field
intensities: the radius a=1 m, the stress p=300 MPa, Poisson’s
ratio =0.3, and Young’s modulus E=200 GPa. For convenience,
the same term �B0 /�0�r� · ���r−1� / ��r+1�� in Eqs. �22�, �27a�,
and �27b� were not taken into the calculation.

Figures 3�a� and 3�b� show the rigid magnetic field intensity
components Hx

− and Hy
−, respectively. There are two maximum

values at �=90 deg and 270 deg, respectively, while two mini-
mum at �=0 deg and 180 deg along the hole boundary for Hx

−.
The y component almost has the same shape as the x component
but it rotates 45 deg anticlockwise.

The perturbed magnetic intensity components hx
− and hy

− were
computed by Eqs. �27a� and �27b� and plotted in Figures 4�a� and
4�b�, respectively. It shows that the intensities of the perturbed
magnetic field are three orders less than the rigid. This is because
the term �1 /E��7+3�p in Eqs. �27a� and �27b� is in the order of
10−3 usually. Furthermore, hx

− has four peaks �at �=45 deg,

135 deg, 225 deg, and 315 deg� and four vales �at �=deg, 90 deg,
180 deg, and 270 deg�. hy

− is similar to hx
− but it rotates 22.5 deg

anticlockwise. Those features can be more clearly observed in
Figs. 5�a� and 5�b�, in which the values of hx

− and hy
− were multi-

plied by 103 in order to make them being comparable.

5.2 Distribution of the Magnetic Field Intensities. Figures
6 and 7 show the change of the magnetic intensity along the
concentric circles of the hole with various radii before and after
deformation, respectively. It found that with ratio r /a increasing
the, the perturbed magnetic field intensities decay more rapidly
than the rigid state. This suggests that it is easier to observe the
perturbed magnetic field at the location close to the hole.

6 Conclusions
In this paper, a set of equations to solve the perturbed magnetic

fields induced by mechanical stress in a magnetoelastic solid was
presented for the case of weak external magnetic field. The per-
turbed magnetic fields of infinite plates subjected to tensile stress
were derived analytically. Some conclusions were drawn as fol-
lows.

�1� Within the presented approach, the perturbed magnetic field
induced by mechanical stress is dominated by the displace-
ment gradient on the boundary of the magnetoelastic solid.

�2� The perturbed magnetic field intensity is proportional to the
applied stress, and is three orders less than the rigid field.
The perturbed field has significant different distribution pat-
tern compared with the rigid.

�3� The perturbed magnetic field reaches its maximum inten-
sity in the boundary region of the hole and its intensity
decays faster than the rigid in the radial direction.
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Dynamics of General Constrained
Robots Derived from Rigid Bodies
A systematic approach for deriving the dynamical expression of general constrained
robots is developed in this paper. This approach uses rigid-body dynamics and two
kinematics-based mapping matrices to form the dynamics of complex robots in closed
form. This feature enables the developed modeling approach to be rigorous in nature,
since every actuator and gear-head can be separated into rigid bodies and no assumption
about approximation beyond rigid-body dynamics is made. The two kinematics-based
mapping matrices are used to govern the velocity and force transformations among three
configuration spaces, namely, general joint space, general task space, and extended
subsystems space. Consequently, the derived dynamics of general constrained robots
maintain the same form and main properties as the conventional single-arm constrained
robots. This approach is particularly useful for robots with hyper degrees of freedom.
Five examples are given. �DOI: 10.1115/1.2839633�

Keywords: robot dynamics, robot simulation and control, rigid body dynamics, robots
with closed chains, general constrained robots

1 Introduction
The conventional Lagrangian dynamic model of a constrained

robot can be written as

M�q�q̈ + C�q,q̇�q̇ + G�q� = � − JTF �1�
when expressed in the joint space or

Mcv̇ + Ccv + Gc = u − F �2�
when expressed in the Cartesian space �1�, where

Mc = J−TM�q�J−1

Cc = J−TC�q,q̇�J−1 + J−TM�q�
d

dt
�J−1�

Gc = J−TG�q�

u = J−T�

with the Jacobian matrix J that maps from q̇ to v being invertible.
It is well known that the total numbers of addition and multi-

plication of a standard compact-in-form Lagrangian dynamical
expression are proportional to the fourth power of the degrees of
freedom of a robot �2,3�. This fact challenges both simulation and
control of hyper degree-of-freedom �DOF� robots. With respect to
this difficulty, a novel systematic approach for dynamical model-
ing by using the dynamics of joints and of rigid bodies was pro-
posed in �4�. The joint dynamics, however, are based on the same
two assumptions in �5�. Although the second assumption is rela-
tively reasonable, the first assumption states that “the kinetic en-
ergy of the �motor� rotor is due mainly to its own rotation. Equiva-
lently, the motion of the rotor is a pure rotation with respect to an
inertial frame.” Although this assumption keeps the main dynamic
effect of the motor rotor, it ignores all secondary dynamic effects
of the motor rotor, such as the gyro effect. Therefore, although
being roughly acceptable for industrial applications, this approxi-
mation possesses limitations when rigorous modeling is con-
cerned. In this paper, the two assumptions in �5� are removed.
Consider the fact that a robotic joint is generally formed by a few

rigid bodies. Therefore, only the dynamics of rigid bodies incor-
porating two kinematics-based mapping matrices are used to form
the dynamic equation of general constrained robots. Thus, the
developed modeling approach possesses a rigorous basis without
using approximations beyond rigid-body dynamics. As illustrated
in Fig. 1, the two mapping matrices transform velocities and
forces among three configuration spaces, namely general joint
space A, general task space O, and extended subsystems space S,
and also impose the original coupling �constraints� on the systems.
The derived dynamic equation of general constrained robots pos-
sesses a closed form resembling the conventional Lagrangian for-
mulation �2�, while preserving main properties. As a special treat-
ment, this modeling technique even allows flexible joints to be
included in the modeling framework.

This paper is organized as follows: In Sec. 2, the modeling
approach for general constrained robots is presented in which
three configuration spaces and two mapping matrices are defined.
In Sec. 3, the modeling procedure is summarized, followed by five
examples.

2 General Constrained Robots
This section presents the procedure for deriving the dynamic

expression of general constrained robots, such as the robot illus-
trated in Fig. 2.

DEFINITION 1. A joint is one bearing or a pair of bearings that
permits certain degree-of-freedom relative motion between two
rigid bodies. A joint can be actuated or unactuated. Three elemen-
tary types of joints are as follows:

• A prismatic joint permits a one-degree-of-freedom transla-
tional relative motion between two rigid bodies.

• A revolute joint permit a one-degree-of-freedom rotational
relative motion between two rigid bodies.

• A spherical joint permit a three-degree-of-freedom rota-
tional relative motion between two rigid bodies.

DEFINITION 2. A general constrained robot is a base-fixed robot
comprised of rigid bodies connected with joints by Definition 1.

2.1 General Constraints. Without loss of generality, it is as-
sumed that a general constrained robot has n1 single-DOF pris-
matic or revolute joints and n3 three-DOF spherical joints. Among
the n1 single-DOF joints, n1a joints are actuated and n1u joints are
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unactuated. Among the n3 three-DOF spherical joints, n3a joints
are actuated and n3u joints are unactuated. It makes

n1 = n1a + n1u �3�

n3 = n1a + n3u �4�

Furthermore, it is assumed that the entire robotic system has m
motion degrees of freedom. This implies that there exist

nc =
def

�n1 + 3n3� − m = �n1a + n1u + 3�n3a + n3u�� − m � 0 �5�
overall constraints inside the system including the operational
constraints and the inherent mechanical constraints.

Two types of coordinate systems are used throughout this paper.
The first type is a coordinate system consisting of three mutually
orthogonal unit axes as the basis, and the second type is a single-
axis coordinate system. The three-unit-axis orthogonal coordinate
system is used to measure the linear/angular velocities1 and the
forces/moments of rigid links, as well as the angular velocities
and the moments of the three-DOF spherical joints. The single-
axis coordinate system is used to measure the linear/rotational
velocities and the forces/torques of the single-DOF joints.

Let �Ja , Ju�, with Ja�Rnc��n1a+3n3a� and Ju�Rnc��n1u+3n3u�, be
a full row-rank matrix characterizing the nc constraints as

Jaq̇a + Juq̇u = 0 �6�

where q̇a�Rn1a+3n3a denotes the velocity coordinates of all actu-
ated joints and q̇u�Rn1u+3n3u denotes the velocity coordinates of
all unactuated joints. Let np denote the rank of matrix Ju with

np � min�nc,n1u + 3n3u� �7�

Premultiplying q̇a by a reordering matrix Ra

�R�n1a+3n3a���n1a+3n3a� forms Raq̇a= �q̇a1
T , q̇a2

T �T and premultiply-
ing q̇u by a reordering matrix Ru�R�n1u+3n3u���n1u+3n3u� forms
Ruq̇u= �q̇u1

T , q̇u2
T �T. Equation �6� can be rewritten as

Ju1q̇u1 + Ja1q̇a1 + Ja2q̇a2 + Ju2q̇u2 = 0 �8�
subject to

1. Ju1�Rnc�np and Ja1�Rnc��nc−np� are of full column rank.
2. �Ju1 , Ja1��Rnc�nc is invertible.

The reordering process intends to find the dependent velocity co-
ordinates in the joints imposed by the nc overall constraints. First,
it finds np independent columns in Ju to form a new matrix Ju1.
Then, it finds nc−np complementary independent columns in Ja to
form a new matrix Ja1. Subject to nc overall constraints, the ma-
trix Ju1 defines the np dependent velocity coordinates in the unac-
tuated joints. The remaining nc−np dependent velocity coordi-
nates are defined by Ja1 for the actuated joints. Note that the nc
−np constraints imposed on the actuated joints result in the same

number of dimensions for the general constraint forces.2

It follows from �8� that

�q̇u1

q̇a1
� = − �Ju1 Ja1�−1�Ja2 Ju2��q̇a2

q̇u2
� = − �J11 J12

J21 J22
��q̇a2

q̇u2
�
�9�

Equation �9� indicates that the joint velocity coordinates q̇a2
�R��n1a+3n3a�−�nc−np�� of the actuated joints and q̇u2
�R��n1u+3n3u�−np� of the unactuated joints form the independent
joint velocity coordinates of the system. As mentioned above,
np-dimensional constraints are imposed on the np unactuated �pas-
sive� joints as

q̇u1 + J11q̇a2 + J12q̇u2 = 0 �10�

and the remaining �nc−np�-dimensional constraints are imposed
on the nc−np actuated joints as

q̇a1 + J21q̇a2 + J22q̇u2 = 0 �11�

Premultiplying �11� by a �nc−np�� �nc−np� full-rank matrix, de-
noted as Tc, yields

Tc�I�nc−np� J21 J22�	q̇a1

q̇a2

q̇u2

=

def

J f� q̇a

q̇u2
� = 0 �12�

with

J f = Tc��I�nc−np� J21�Ra J22� �13�

where matrix Tc maps the �nc−np�-dimensional constraints de-
fined by �11� to where the �nc−np�-dimensional general constraint
force is defined.3 Note that matrix J f
�R�nc−np���n1a+3n3a+n1u+3n3u−np� is of full row rank.

Define the system dimensions as

n =
def

n1 + 3n3 − np = �n1a + 3n3a + n1u + 3n3u� − np = m + �nc − np�
�14�

The system dimensions include m motion degrees of freedom and
nc−np dimensions for the general constraint forces.

Remark 2.1. The nc constraints of a robotic system represent the
pure mechanical constraints inside the robotic system �such as the
constraints among the linkages� and the constraints between the
robot and the environment. Among the nc overall constraints, np
constraints are satisfied by releasing the corresponding motion

1Linear velocity refers to point velocity of the origin of a corresponding frame.

2The general constraint forces in this paper refer to all the constraint forces that
can be directly regulated by actuators without affecting the motion of the systems.
The general constraint forces include the conventional constraint forces for single-
arm robots and the internal forces for coordinated multiple-arm robots.

3Matrix Tc can be identity if the constraint equation �11� is directly defined on the
operations.

Fig. 2 A general constrained robotic system

Fig. 1 Velocity and force mappings among three configuration
spaces
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coordinates associated with the unactuated joints �as performed by
�10��. The remaining nc−np constraints appear in the ultimate dy-
namic equation.

2.2 General Joint Space A. The general joint space A com-
prises n1a+3n3a actuated dimensions and n1u+3n3u−np unactu-
ated dimensions and, therefore, possesses n dimensions.

Let

q̇A = � q̇a

q̇u2
� � Rn �15�

be the velocity coordinates and let

�A = ��a

0
� � Rn �16�

be the corresponding torque coordinates, in the general joint
space A, where �a in Rn1a+3n3a denotes the joint control forces/
torques.

2.3 General Task Space O. The general task space O com-
prises an m-dimensional motion space and an
�nc−np�-dimensional constraint force space. Thus, it possesses n
dimensions, and is analogous to the Cartesian space. Configura-
tion space O is application oriented.

In view of �12� and �15�, the constraint force is characterized by
J fq̇A=0. Accordingly, the constraint force transferred to the gen-
eral joint space A can be expressed as J f

T� f, where � f �Rnc−np

denotes the general constraint force coordinates that do not trans-
fer power. Besides the general constraint force, the dynamic con-
tact force coordinates in the motion space �6� can be denoted as
�m�Rm, which represents the forces that are state dependent.
Examples include frictional forces and contact forces with com-
pliant environments. As a result, the overall general constraint
force coordinates and the dynamic contact force coordinates con-
verted to the general joint space A can be written as

�* = �J f
T Dm

T ��� f

�m
� �17�

where Dm�Rm�n is a matrix.
In space O, let vm�Rm be the independent velocity coordinates

subject to

vm = Jmq̇A �18�

where Jm�Rm�n is of full row rank.
Because the rows of J f span the space for the general constraint

force and the rows of Jm span the space for the free motion, the
orthogonality of J f and Jm �i.e., J f

TJm=0� can be ensured �6�.
Furthermore, consider the fact that both Jm and J f are of full row
rank, the composed matrix

JO = �Jm

J f
� � Rn�n

is of full rank and, therefore, is invertible such that

JO
−1 = �Jm

J f
�−1

= �J� J�� �19�

where J��Rn�m and J��Rn��n−m� are two matrices with full
column rank.

In view of �12�, �15�, and �18�, it follows that

vO =
def�vm

0
� = �Jm

J f
�q̇A �20�

Consequently, it yields

q̇A = J�vm �21�

2.4 Extended Subsystems Space S. The extended sub-
systems space S in which the dynamics of rigid bodies are ex-

pressed casts the kernel of the proposed approach for dynamic
modeling. This is due to the fact that the separated dynamics of
rigid bodies that comprise a robotic system are much simpler than
the standard Lagrangian dynamical expression of the aggregated
�coupled� robotic system, particularly for robots with high degrees
of freedom �7�.

Three types of subsystems, namely, the rigid links �rigid bod-
ies�, the single-DOF prismatic or revolute joints, and the three-
DOF spherical joints, are studied. Let � be a set containing all
frames each is fixed to a corresponding rigid body, �1 be a set
containing the sequential numbers of all single-DOF joints, and
�3 be a set containing the sequential numbers of all three-DOF
spherical joints.

Define a body-frame �B��� referenced linear/angular velocity
vector as

BV = � BRIvB
BRI�B

� � R6 �22�

where BRI�R3�3 is a rotation matrix that transforms a three-
dimensional vector expressed in inertial frame �I� to the same
vector expressed in frame �B�, and vB�R3 and �B�R3 denote
the linear and angular velocities of frame �B� and expressed in
inertial frame �I�.

Accordingly, define a body-frame �B� referenced force/moment
vector as

BF = � BRIfB
BRImB

� � R6 �23�

where fB�R3 and mB�R3 denote a force and a moment refer-
enced by frame �B� and expressed in inertial frame �I�.

Let BF*�R6 be the net force/moment of a rigid body, refer-
enced to the body frame �B�. The dynamics of this rigid body
expressed in the body frame �B��� can be written as �7�

MB
d

dt
�BV� + CB

BV + GB = BF* �24�

where the explicit expressions of MB�R6�6, CB�R6�6, and
GB�R6 are given by �7� �p. 418� with MB being constant and
symmetric and CB being skew symmetric.

The force/torque relation of the jth single-DOF joint is

�1j�t� = 	1j − fp1j, j � �1 �25�

where �1j�t��R is the frictional force/torque, 	1j �R is the joint
control force/torque,4 and −fp1j �R is the projected force/moment
from the links along the joint axis.

The moment relation of the ith three-DOF spherical joint is

�3i�t� = �3i − mp3i, i � �3 �26�

where �3i�t��R3 denotes the frictional moment, �3i�R3 is the
joint control torques,5 and −mp3i�R3 is the projected moment
from the links along the three joint axes.

The extended velocity and net force/moment coordinates in
space S are expressed as

V =
def

�¯ , BVT, ¯ �T, �B� � � �27�

F* =
def

�¯ , BF*T
, ¯ �T, �B� � � �28�

In view of �24�, it follows from the definitions of V and F* that

F* = MV̇ + CV + G �29�

where

4	1j =0 holds for a unactuated joint.
5�3i=0 holds for a unactuated spherical joint.
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M = diag�¯ ,MB, ¯ �, �B� � �

C = diag�¯ ,CB, ¯ �, �B� � �

G = �¯ ,GB
T , ¯ �T, �B� � �

Based on the definition of q̇A�Rn in space A, the extended
velocity V in space S can be expressed as

V = JSq̇A �30�

The physical meaning of �30� is that the velocities of all rigid
bodies are completely dependent on the velocities in space A.
Thus, Eq. �30� imposes kinematic constraints on �24�.

With � f =0 and �m=0, the power received by all rigid links
equals the power generated by all joints, i.e.,

�
�B���

BVTBF* = �
j��1

�q̇1j f p1j� + �
i��3

�q̇3i
T mp3i� �31�

Substituting fp1j from �25� and mp3i from �26� into �31� yields

�
�B���

BVTBF* = �
j��1

�q̇1j	1j� + �
i��3

�q̇3i
T �3i� − �

j��1

�q̇1j�1j�

− �
i��3

�q̇3i
T �3i� �32�

Note that the definitions of V and F* ensures

�
�B���

BVTBF* = VTF* �33�

Meanwhile,

�
j��1

�q̇1j	1j� + �
i��3

�q̇3i
T �3i� = q̇A

T�A �34�

is valid because 	1j =0 or �3i=0 for a unactuated joint. Moreover,
rewrite � j��1

�q̇1j�1j�+�i��3
�q̇3i

T �3i� as

�
j��1

�q̇1j�1j� + �
i��3

�q̇3i
T �3i� = q̇a1

T �a1 + q̇a2
T �a2 + q̇u1

T �u1 + q̇u2
T �u2

= q̇A
T�q �35�

in view of �10�, where vectors �a1, �a2, �u1, and �u2 contain fric-
tional forces/torques/moments corresponding to q̇a1, q̇a2, q̇u1, and
q̇u2, respectively, and

�q = �Ra
T

I
�	

I 0 0

0 I 0

0 − J11 − J12

0 0 I



T

	
�a1

�a2

�u1

�u2


 �36�

Thus, substituting �33�–�35� into �32� yields

VTF* + q̇A
T�q = q̇A

T�A �37�

In view of �30� and �37�, it follows that

q̇A
TJS

TF* + q̇A
T�q = q̇A

T�A �38�

In a particular case that only the kth element of q̇A is nonzero �i.e.
mathematically, q̇k�0 and q̇j =0 for j=1,2 , . . . ,k−1,k+1, . . . ,n�,
it follows from �38� that

�JS
TF*�k + ��q�k = 	k �39�

where �JS
TF*�k, ��q�k, and 	k denote the kth elements of JS

TF*, �q,
and �A, respectively. Equation �39� gives a transformation about
forces from space S to space A. Because the transformation de-
pends on the configuration only, �39� will be valid for all k
� �1,n�. Thus, it yields

JS
TF* + �q = �A �40�

Equation �40� demonstrates how the net forces/moments of a ro-

botic system are mapped into the general joint space A. The
actual joint torques, however, will include the torques that are
transfered from the general constraint force coordinates � f and
from the dynamic contact force coordinates �m as formulated by
�17�. Therefore, the force transformation equation should be re-
written as

JS
TF* + �q = �A − �* �41�

2.5 Dynamic Model. Based on �17�, �20�, �29�, �30�, and
�41�, the dynamic model of a general constrained robot expressed
in space O is written as

MG�v̇m

0
� + CG�vm

0
� + GG = JO

−T�A − � 0

� f
� �42�

where

MG = JO
−TJS

TMJSJO
−1

CG = �JO
−TJS

TCJSJO
−1 + JO

−TJS
TM d

dt
�JSJO

−1��
GG = JO

−T�JS
TG + �q + Dm

T �m�

A comparison between �2� and �42� is given in Table 1.
Remark 2.2. In Eq. �42�, vm�Rm denotes the independent ve-

locity coordinates in the general task space O. Among the m di-
mensions of vm�Rm, there exist �n1u+3n3u−np� unactuated di-
mensions. Therefore,

m 
 n1u + 3n3u − np �43�

holds. Meanwhile, the dimensions for the general constraint force
are nc−np.

Remark 2.3. In simulations, the independent variables of inte-
gration are v̇m�Rm. The effective velocity coordinates of the en-
tire system are denoted as �vm

T ,0T�T�Rn, where vm�Rm is the
integral of v̇m�Rm.

Remark 2.4. In view of the dynamic equation of the general
constraint robots represented by �42�, two groups of components
are needed. The first group consists of two kinematics mapping
matrices JO and JS, and the second group consists of M, C, and G,
the matrices and vector formed from the dynamics of all rigid
bodies �7�. Because the dynamic formulation in space S is stan-
dard, the task needs to be done for a particular application is to
find the two kinematics-based mapping matrices JO and JS.

Remark 2.5. Note that M is time invariant and symmetric, and
C is skew symmetric. Therefore, it follows that

Table 1 Comparison between „2… and „42…

Eq. �2� Eq. �42�

M�q� JS
TMJS

C�q , q̇� JS
TCJS

J−TM�q�J−1 JO
−TJS

TMJSJO
−1

J−TC�q , q̇�J−1+J−TM�q��d /dt��J−1� JO
−TJS

TCJSJO
−1+JO

−TJS
TM�d /dt��JSJO

−1�
J−TG�q� JO

−T�JS
TG+�q+Dm

T �m�
J−T� JO

−T�A

F � 0

� f
�
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1

2

d

dt
�JO

−TJS
TMJSJO

−1� − �JO
−TJS

TCJSJO
−1 + JO

−TJS
TM d

dt
�JSJO

−1��
=

1

2

d

dt
�JO

−TJS
T�MJSJO

−1 −
1

2
JO

−TJS
TM d

dt
�JSJO

−1� − JO
−TJS

TCJSJO
−1

is skew symmetric.
Remark 2.6. Newton–Euler formulation has been well known

for its recursive forms in either forward dynamics �8,9� or inverse
dynamics �7,10�. The dynamic formulation presented in this paper
can be considered as a closed form of the Newton–Euler formu-
lation that may have exactly the same application forum as the
Lagrangian formulation. In other words, the closed form of the
Newton–Euler formulation is applicable to both forward-
dynamics-based simulations and inverse-dynamics-based controls
�11,12�.

3 Modeling Procedure and Examples

3.1 Modeling Procedure. In this section, the modeling ap-
proach presented in the last section is summarized into the follow-
ing steps.

Step 1. For a given base-fixed �or equivalent� robotic system,
count the number of single-DOF prismatic or revolute joints and
the number of three-DOF spherical joints. It yields n1 and n3.
Among the n1 single-DOF prismatic or revolute joints, count the
number of actuated joints and the number of unactuated joints. It
yields n1a and n1u. Among the n3 three-DOF spherical joints,
count the number of actuated joints and the number of unactuated
joints. It yields n3a and n3u.

Step 2. Determine the number of motion degrees of freedom of
the system and obtain m. Calculate nc �the dimensions of the
constraints� in terms of �5�.

Step 3. Specify the nc overall constraints. Assign appropriate
coordinate frames in space O for motion/force descriptions. Fur-
thermore, assign at least one coordinate frame to each rigid body.

Step 4. Specify q̇a�Rn1a+3n3a and q̇u�Rn1u+3n3u, and form Ja
and Ju subject to �6� accordingly. It yields np, the rank of Ju.

Step 5. Find two reordering matrices Ra and Ru for Ja and Ju,
respectively, to form Ja1, Ja2, Ju1, and Ju2 such that �Ju1 ,Ja1�
�Rnc�nc is invertible.

Step 6. Calculate J11, J12, J21, and J22 from �9�.
Step 7. Specify the constraint force coordinates � f �Rnc−np, de-

termine the matrix Tc, and then form J f in terms of �13�.
Step 8. Determine n in terms of �14� and form q̇A and �A in

terms of �15� and �16� in space A.
Step 9. Specify the dynamic contact force coordinates �m, and

form the transformation matrix Dm, accordingly.
Step 10. Specify the m-dimensional independent velocity coor-

dinates vm in space O and form the full row-rank mapping matrix
Jm. Construct

JO = �Jm

J f
� .

Step 11. Construct the velocity mapping matrix JS in terms of
�30�.

Step 12. Write the block diagonal matrices and vector M, C,
and G in space S. Finally, form the dynamic model �42�.

Five examples are presented below to demonstrate each step in
detail.

3.2 Single-Arm Constrained Direct-Drive Manipulators.
The first example is a six-single-DOF-joint direct-drive robot ma-
nipulator grasping an object in contact with a plane, as illustrated
in Fig. 3. Being a direct-drive robot, the system has n1=n1a=6
actuated single-DOF joints, n1u=0 unactuated single-DOF joint,
and n3=0 three-DOF spherical joint in step 1.

Because the robot end effector is in contact with a plane, it

yields m=3 �the linear motion along the two tangential directions
of the plane and the rotational motion along the normal vector of
the plane�. Thus, it follows that nc=6+0−3=3 from �5� in step 2.

In step 3, the linear motion along the two tangential directions
of the contact plane and the rotational motion along the normal
vector of the contact plane specify the motion space. The linear
motion along the normal vector of the contact plane and the rota-
tional motion along the two tangential directions of the contact
plane specify the constraints. A frame �O� is fixed to the robot end
effector in a way that its x- and y-axes lie on the contact plane and
its z-axis coincides with the normal vector of the contact plane.
Meanwhile, the six joints are numbered sequentially from the base
toward the end effector with the jth joint connecting the jth link
with the j−1th link, j=1, . . . ,6. There are six auxiliary frames
�B j�, j=1,2 , . . . ,6, each is fixed to link j with its z-axis, coincid-
ing with the jth joint.

In step 4, specify q̇a= q̇A= �q̇1 , . . . , q̇6�T�R6 and q̇u=0, and
form Ja as

Ja = T fJq �44�
with

T f = 	0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

 � R3�6

Jq = �B1UO
T z1, B2UO

T z2, . . . , B6UO
T z6� � R6�6

where

AUB = � ARB 03�3

�ArB � �ARB
ARB

� � R6�6

denotes a force/moment transformation matrix that transforms a
force/moment measured and expressed in frame �B� to the force/
moment measured and expressed in frame �A�, with ARB�R3�3

being a rotation matrix that transforms a 3�1 vector expressed in
frame �B� to the same vector expressed in frame �A� and ArB
�R3 being a vector pointing from the origin of frame �A� to the
origin of frame �B� and expressed in frame �A�, and z j

= �0 0 1 0 0 0�T for a prismatic joint and z j = �0 0 0 0 0 1�T for a
revolute joint, j=1, . . . ,6. Because there is no unactuated joint in
the system, it yields Ju=0 and, therefore, np=0.

In step 5, find Ra�R6�6 to form JaRa
T= �Ja1�R3�3 ,Ja2

�R3�3� such that Ja1 is invertible.
In step 6, q̇a2�R3 being the independent velocity coordinates

leads to

Fig. 3 Single-arm constrained robot
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J21 = Ja1
−1Ja2 � R3�3

with J11=0, J12=0, and J22=0 in �9�.
In step 7, the three-dimensional constraint forces are specified

as the force along the z-axes and the two moments along the x-
and y-axes of frame �O�. It follows that

� f = 	 fz

mx

my

 � R3

where fz�R denotes the force along the z-axis of frame �O� and
mx�R and my �R denote the moments along the x- and y-axes of
frame �O�. Moreover, specify Tc=Ja1 leading to

J f = Ja � R3�6

from �13�.
In step 8, n=6 is obtained from �14�. q̇A= �q̇1 , . . . , q̇6�T�R6 and

�A= �	1 , . . . ,	6�T�R6 represent the velocities and control torques
in space A. In step 9, the dynamic contact forces are the frictional
forces and torque in the motion space. It yields

Dm = TmJq � R3�6 �45�

with

Tm = 	1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

 � R3�6

In step 10, it follows that

vm = 	vx

vy

�z

 � R3

where vx�R and vy �R denote the linear velocities of the end
effector along the x- and y-axes of frame �O� and �z�R denotes
the angular velocity of the end effector along the z-axis of frame
�O�. Accordingly, it yields

Jm = TmJq � R3�6

to form

JO = �Jm

J f
� � R6�6.

In step 11, the velocity mapping matrix JS is designed as

JS = JL � R42�6

with

JL =	
z1

B1UB2

T z1 z2

] � �

B1UB6

T z1
B2UB6

T z2 ¯ z6

B1UO
T z1

B2UO
T z2 ¯

B6UO
T z6


 � R42�6 �46�

In step 12, M, C, and G in space S are obtained as

M = diag�MB1
, . . . ,MB6

,MO�

C = diag�CB1
, . . . ,CB6

,CO�

G = �GB1

T , . . . ,GB6

T ,GO
T �T

3.3 Single-Arm Constrained Manipulators With Gears.
When a gear box is placed between each motor and its output
shaft, as illustrated in Fig. 4, each actuated joint is split into two
joints by Definition 1. Assume that the gear box has only two

gears: one for input and another for output. As far as multiple
gearing stages are concerned, an actuated joint can be split into
multiple joints.

It follows that n1a=6, n1u=6, and n3=0 in step 1. In step 2, it
yields m=3 �the linear motion along the two tangential directions
of the plane and the rotational motion along the normal vector of
the plane�. Thus, it follows nc= �n1+3n3�−m=n1a+n1u−m=6+6
−3=9 from �5�.

In step 3, the nine overall constraints comprise three constraints
at the end effector and six constraints at the gear boxes. The three
constraints at the end effector constrain the linear motion along
the normal vector of the contact plane and the rotational motion
along the two tangential directions of the contact plane. The six
constraints at the gear boxes constrain the motion between the
input gears and the output gears. Moreover, a frame �O� is fixed to
the robot end effector in a way that its x- and y-axes lie on the
contact plane and its z-axis coincides with the normal vector of
the contact plane. At each actuator, three frames, denoted as �T j�,
�A j�, and �B j�, j� �1,6�, are fixed to the motor base, to the motor
rotor, and to the output shaft, respectively, with their z-axes coin-
ciding with the corresponding joint axes, as illustrated in Fig. 4.

In step 4, let q̇aj �R be the motor velocity measured by frame
�A j� with respect to frame �T j�. Let q̇uj �R be the output shaft
velocity measured by frame �B j� with respect to frame �T j�.
Specify q̇a= �q̇a1 , . . . , q̇a6�T�R6 and q̇u= �q̇u1 , . . . , q̇u6�T�R6.
Then, it follows from �6� that

Ja = �03�6

− I6
� � R9�6 �47�

Ju = � T fJq

diag�kg1, . . . ,kg6� � � R9�6 �48�

where

T f = 	0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

 � R3�6

Jq = �B1UO
T z1, B2UO

T z2, . . . , B6UO
T z6� � R6�6

In �48�, kgj �0 denotes the gear ratio of the jth gear box, j
� �1,6�. Moreover, it yields np=6, the rank of Ju. Furthermore,
the constraints at the six actuators can be expressed by

q̇aj = kgjq̇uj, j � �1,6� �49�
in view of �6�, �47�, and �48�.

In step 5, find Ra�R6�6 to form JaRa
T= �Ja1�R9�3 ,Ja2

�R9�3� with

Ja1 = JaRa
T� I3

03�3
�

Fig. 4 A joint assembly with motor and transmission
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Ja2 = JaRa
T�03�3

I3
�

such that �Ju ,Ja1��R9�9 is invertible.
In step 6, q̇a2�R3 being the independent velocity coordinates

leads to

�J11

J21
� = �Ju Ja1�−1Ja2 � R9�3

with J11�R6�3 and

J21 = �T fJq diag�kg1, . . . ,kg6�−1Ra
T� I3

03�3
�−1

�T fJq diag�kg1, . . . ,kg6�−1Ra
T�03�3

I3
� � R3�3

Meanwhile, the fact that q̇u2=0 leads to J12=0 and J22=0 in �9�.
In step 7, the three-dimensional constraint force coordinates are

specified as

� f = 	 fz

mx

my

 � R3

where fz�R denotes the force along the z-axis of frame �O� and
mx�R and my �R denote the moments along the x- and y-axes of
frame �O�. Moreover, specify

Tc = T fJq diag�kg1, . . . ,kg6�−1Ra
T� I3

03�3
� � R3�3

leading to

J f = T fJq diag�kg1, . . . ,kg6�−1 � R3�6

from �13�.
In step 8, n=6 is obtained from �14�. Meanwhile, q̇A= q̇a�R6

and �A= �	1 , . . . ,	6�T�R6 represent the velocities and control
torques in space A.

In step 9, the dynamic contact forces are the frictional forces
and torque in the motion space. It yields

Dm = TmJq diag�kg1, . . . ,kg6�−1 � R3�6

where Tm�R3�6 is defined in �45� and Jq�R6�6 is defined in
�44�.

In step 10, it follows that

vm = 	vx

vy

�z

 � R3

where vx�R and vy �R denote the linear velocities of the end
effector along the x- and y-axes of frame �O� and �z�R denotes
the angular velocity of the end effector along the z-axis of frame
�O�. Accordingly, it yields

Jm = TmJq diag�kg1, . . . ,kg6�−1 � R3�6

to form

JO = �Jm

J f
� � R6�6

In step 11, the velocity mapping matrix JS is designed as

JS = �JL diag�kg1, . . . ,kg6�−1

JA
� � R78�6

with JL being defined in �46� and

JA = 	
z1

A1UA2

T z1 z2

] � �

A1UA6

T z1
A2UA6

T z2 ¯ z6


 � R36�6 �50�

In step 12, M, C, and G in space S are obtained as

M = diag�MB1
, . . . ,MB6

,MO,MA1
, . . . ,MA6

� �51�

C = diag�CB1
, . . . ,CB6

,CO,CA1
, . . . ,CA6

� �52�

G = �GB1

T , . . . ,GB6

T ,GO
T ,GA1

T , . . . ,GA6

T �T �53�

3.4 Single-Arm Constrained Manipulators With Flexible
Joints. When the gear box associated with each actuator is re-
placed by a torsional spring, the constrained robot in Fig. 3 be-
comes a constrained flexible-joint robot �5�. It follows that n1a
=6, n1u=6, and n3=0 in step 1.

In step 2, because the relative motion between each motor rotor
and its output shaft is permitted, it follows that m=9 �the linear
motion along the two tangential directions of the contact plane,
the rotational motion along the normal vector of the plane, and the
six positions of the motor rotors�. Thus, it follows nc= �n1+3n3�
−m=6+6−9=3 from �5�.

In step 3, the three constraints at the end effector constrain the
linear motion along the normal vector of the contact plane and the
rotational motion along the two tangential directions of the con-
tact plane. A frame �O� is fixed to the robot end effector in a way
that its x- and y-axes lie on the contact plane and its z-axis coin-
cides with the normal vector of the contact plane. At each actua-
tor, three frames, denoted as �T j�, �A j�, and �B j�, j� �1,6�, are
fixed to the motor base, to the motor rotor, and to the output shaft,
respectively, with their z-axes coinciding with the corresponding
joint axes, as illustrated in Fig. 4

In step 4, let q̇aj �R be the motor velocity measured by frame
�A j� with respect to frame �T j�. Let q̇uj �R be the output shaft
velocity measured by frame �B j� with respect to frame �T j�.
Specify q̇a= �q̇a1 , . . . , q̇a6�T�R6 and q̇u= �q̇u1 , . . . , q̇u6�T�R6.
Then, it follows that Ja=0 and

Ju = T fJq � R3�6

where T f �R3�6 and Jq�R6�6 are defined in �44�. Thus, it yields
np=3, which is the rank of Ju.

In step 5, Let Ru�R6�6 be a reordering matrix such that

�q̇u1 � R3

q̇u2 � R3 � = Ruq̇u

�Ju1 � R3�3,Ju2 � R3�3� = JuRu
T

with Ju1 being invertible.
In step 6, calculate q̇u1=−Ju1

−1Ju2q̇u2=−J12q̇u2 with J11=0, J21
=0, and J22=0 in terms of �9�. In step 7, because nc−np=0, the
constraint force/moments at the end effector are not reflected in
the dynamic equation with � f =0.

In step 8, n=9 is obtained from �14�. Meanwhile, it follows that

q̇A = � q̇a

q̇u2
� � R9

�A = ��a

0
� � R9

In step 9, the dynamic contact forces include not only the fric-
tional forces and torque at the contact plane, but also the six
torsional torques at the six actuators. It follows that
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�m = 	
f fx

f fy

mfz

ks1�qa1 − qu1�
]

ks6�qa6 − qu6�

 � R9

and

Dm = 	03�6 TmJqRu
T�− J12

I3
�

I6 − Ru
T�− J12

I3
� 


where f fx, f fy, and mfz denote the frictional forces along the x- and
y-axes and the frictional torque along the z-axis of the contact
plane; Tm�R3�6 is defined in �45� and Jq�R6�6 is defined in
�44�.

In step 10, it follows that

vm = 	
vx

vy

�z

q̇a


 � R9

where vx�R and vy �R denote the linear velocities of the end
effector along the x- and y-axes of frame �O� and �z�R denotes
the angular velocity of the end effector along the z axis of frame
�O�. Accordingly, it yields

Jm = 	03�6 TmJqRu
T�− J12

I3
�

I6 06�3



and furthermore,

JO = Jm � R9�9

In step 11, the velocity mapping matrix JS is designed as

JS = 	042�6 JLRu
T�− J12

I3
�

JA 036�3

 � R78�9

with JL�R42�6 and JA�R36�6 being defined in �46� and �50�,
respectively. In step 12, M, C, and G in space S are defined in
Eqs. �51�–�53�.

3.5 Coordinated Multiple Manipulators. Consider a system
comprised of h direct-drive manipulators grasping a rigid object
moving in free space without kinematic singularity. Each manipu-
lator has six actuated single-DOF joints. It follows that n1=n1a
=6h, n1u=0, and n3=0 in step 1. Meanwhile, it yields m=6 and
nc=6�h−1� in step 2.

In step 3, the six-dimensional motion belongs to the held object
and the 6�h−1�-dimensional constraints are imposed on the end
effectors of the h manipulators. Frame �O� is fixed to the held
object. Frame �Bij� is assigned to the jth link of the ith manipu-
lator, i=1,2 , . . . ,h, j=1,2 , . . . ,6.

In step 4, q̇a= �q̇1
T , q̇2

T , . . . , q̇h
T�T�R6h with q̇i

= �q̇i1 , q̇i2 , . . . , q̇i6�T�R6 and q̇u=0 are specified. Furthermore, Ja
is formed as

Ja = ThfJhq � R6�h−1��6h

with

Thf = 	
I6 − I6 0 ¯ 0

0 I6 � � ]

] � � − I6 0

0 ¯ 0 I6 − I6


 � R6�h−1��6h

Jhq = diag�J1,J2, . . . ,Jh� � R6h�6h

where Ji, i=1,2 , . . . ,h, is exactly the same as Jq defined in Secs.
3.1–3.4. Meanwhile, it follows that Ju=0 and np=0.

In step 5, design

Ra = �06�h−1��6 I6�h−1�

I6 06�6�h−1�
� � R6h�6h

to form

JaRa
T = �Ja1 � R6�h−1��6�h−1�,Ja2 � R6�h−1��6� � R6�h−1��6h

such that Ja1 is of full rank.
In step 6, compute

J21 = Ja1
−1Ja2 � R6�h−1��6

with J11=0, J12=0, and J22=0 in �9�.
In step 7, the constraint forces are located among the end ef-

fectors of the h manipulators. Therefore, it follows that

� f = 	
�12

�23

]

��h−1�h


 � R6�h−1�

where ��i−1�i�R6, i=2, . . . ,h, denotes the internal force between
the i−1 manipulator and the ith manipulator, expressed in frame
�O�. Consequently, specify Tc=Ja1�R6�h−1��6�h−1� leading to

J f = Ja � R6�h−1��6h

from �13�.
In step 8, n=6h is obtained from �14�. Furthermore, it yields

q̇A = q̇a � R6h

and

�A = ��1
T,�2

T, . . . ,�h
T�T � R6h

with �i= �	i1 ,	i2 , . . . ,	i6��R6.
Because all the end effectors are rigidly holding a rigid object,

there is no dynamic contact force. It gives �m=0 in step 9.
In step 10, the independent velocity coordinates vm in space O

are specified as vm= OV�R6, where OV denotes the linear/angular
velocities of and expressed in frame �O� �7�. Accordingly, Jm is
obtained as

Jm = HJhq � R6�6h

where

H = ��1I6,�2I6, . . . ,�hI6� � R6�6h

with �i
0 subject to �i=1
h �i=1. Finally, it forms

JO = �Jm

J f
� � R6h�6h

In step 11, the velocity mapping matrix JS is obtained as

JS = �diag�JS1,JS2, . . . ,JSh�
HJhq

� � R�36h+6��6h

with
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JSi = 	
zi1

Bi1UBi2

T zi1 zi2

] � �

Bi1UBi6

T zi1
Bi2UBi6

T zi2 ¯ zi6


 � R36�6 �54�

for i=1,2 , . . . ,h, where zij = �0 0 1 0 0 0�T�R6 for a prismatic
joint and zij = �0 0 0 0 0 1�T for a revolute joint, j=1,2 , . . . ,6.

Finally, in step 12, M, C, and G in space S are obtained as

M = diag

�MB11
, ¯ ,MB16

,MB21
, . . . ,MB26

, . . . ,MBh1
, . . . ,MBh6

,MO�

C = diag�CB11
, . . . ,CB16

,CB21
, . . . ,CB26

, . . . ,CBh1
, . . . ,CBh6

,CO�

G = �GB11

T , . . . ,CB16

T ,GB21

T , . . . ,GB26

T , . . . ,GBh1

T , . . . ,GBh6

T ,GO
T �T

3.6 Space Robots. A space robot equipped with three reaction
wheels and two arms holding a common rigid object, as illustrated
in Fig. 5, is taken as an example to detail the design procedure. It

is assumed that each arm has six single-DOF direct-drive joints
without subject to kinematic singularity. In order to make the
modeling approach applicable, a Cartesian-type virtual manipula-
tor with six degrees of freedom is added between the ground and
the space robot base.

It follows that n1a=2�6+3�1=15, n1u=3�1=3, n3a=0, and
n3u=1, because there are 15 single-DOF actuated joints associated
with the two arms and with the three reaction wheels, and there
are 3 single-DOF unactuated joints and 1 three-DOF unactuated
spherical joint associated with the virtual manipulator. It turns out
to be n1=n1a+n1u=15+3=18 and n3=n3u=1 in step 1.

In step 2, it yields m=15 and nc=n1+3n3−m=6. The 15 mo-
tion degrees of freedom include 6 for the base, 6 for the held
object, and 3 for the three reaction wheels.

In step 3, the nc=6 overall constraints apply to the two end
effectors through the commonly held object. Frame �B� is at-
tached to the base, frame �O� is attached to the held object, frame
�Bij�, i� �1,2�, j� �1,6�, is attached to the jth link of the ith arm
with its z-axis aligning with the jth joint of the ith arm, and frame
�Wk�, k� �1,3�, is attached to the kth reaction wheel with its

Fig. 5 A space robot with two arms holding a rigid object
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z-axis aligning with the joint axis.
In step 4, specify

q̇a = �q̇m1
T ,q̇m2

T ,q̇w
T�T � R15

with q̇mi= �q̇i1 , q̇i2 , . . . , q̇i6�T�R6, i=1,2, denoting the joint veloc-
ity coordinates of the ith arm and q̇w= �q̇w1 , q̇w2 , q̇w3�T�R3 denot-
ing the joint velocity coordinates of the reaction wheels, and then
specify

q̇u = BV � R6

Because the joint velocities of the virtual manipulator are not
measurable, the linear/angular velocities of the base expressed in
frame �B� are used instead. The six overall constraints at the held
object can be expressed as

Ja = �Jm1 − Jm2 06�3� � R6�15

Ju = 06�6

in terms of �6�, where

Jmi = �Bi1UO
T zi1, Bi2UO

T zi2, . . . , Bi6UO
T zi6� � R6�6

for i=1,2. Because Ju=06�6, it yields np=0.
The fact of np=0 leads to Ja1=Jm1�R6�6 and Ja2

= �−Jm2 06�3 ��R6�9 in step 5, and

J21 = �− Jm1
−1 Jm2 06�3� � R6�9

J22 = 06�6

with J11=0 and J12=0 in step 6.
In step 7, specify the constraint force coordinates � f �R6 as the

internal force/moment of the held object. It then determines the
matrix

Tc = Jm1 � R6�6

J f = �Ja Ju� � R6�21

in terms of �13�.
In step 8, n=21 is obtained from �14�. Furthermore, it yields

q̇A = �q̇a
T,q̇u

T�T � R21

�A = ��a
T,0T�T � R21

where q̇a�R15 and q̇u�R6 have been defined in step 4, and

�a = ��m1
T ,�m2

T ,�w
T�T � R15

with �mi= �	i1 ,	i2 , . . . ,	i6��R6 for i=1,2 and �w

= �	w1 ,	w2 ,	w3�T�R3.
Because the two end effectors are rigidly holding an object,

there is no dynamic contact force. It gives �m=0 in step 9.
In step 10, the 15 independent velocity coordinates vm in space

O are specified as

vm = �OVT,q̇w
T , BVT�T � R15

where OV�R6 denotes the linear/angular velocities of the held
object and expressed in frames �O� �7�. Accordingly, Jm is ob-
tained as

Jm = 	 Jm1 06�6 06�3
BUO

T

03�6 03�6 I3 03�6

06�6 06�6 06�3 I6

 � R15�21

Finally, it forms

JO = �Jm

J f
� � R21�21

In step 11, the velocity mapping matrix JS defined by �30� is
obtained as

JS = 	
Jm1 06�6 06�3

BUO
T

JS1 036�6 036�3 JB1

036�6 JS2 036�3 JB2

018�6 018�6 JW JBW

06�6 06�6 06�3 I6


 � R102�21

with JSi�R36�6, i=1,2, being defined in �54� and

JBi = �BUBi1
, BUBi2

, . . . , BUBi6
�T � R36�6, i = 1,2

JW = diag�z1,z2,z3� � R18�3

JBW = �BUW1
, BUW2

, BUW3
�T � R18�6

where z j = �0,0 ,0 ,0 ,0 ,1�T�R6 for all j� �1,3�.
Finally, in step 12, M, C, and G in space S are obtained as

M = diag

�MO,MB11
, . . . ,MB16

,MB21
, . . . ,MB26

,MW1
, . . . ,MW3

,MB�

C = diag�CO,CB11
, . . . ,CB16

,CB21
, . . . ,CB26

,CW1
, ¯ ,CW3

,CB�

M = �GO
T ,GB11

T , . . . ,GB16

T ,GB21

T , . . . ,GB26

T ,GW1

T , . . . ,GW3

T ,GB
T�T

4 Conclusion
In this paper, a novel approach for deriving the dynamic models

of a class of general constrained robots has been developed. With
this approach, only separate dynamics of individual rigid bodies
and two kinematics-based mapping matrices are needed to con-
struct the dynamic equation of a robot. This feature makes the
developed approach to be one of the most rigorous modeling ap-
proaches by far, because no approximation beyond rigid-body dy-
namics is made. Meanwhile, the derived dynamic equation pos-
sesses a closed form resembling to the well-known dynamics of
the single-arm constrained robots.

Because the dynamics of rigid bodies are simple and standard,
the unique information required for a particular application in-
cludes only the two kinematics-based mapping matrices. Thus, the
dynamics issue of a complex robotic system is virtually converted
into the kinematics issue plus the use of standard rigid-body dy-
namics. Five examples have been presented.

Nomenclature
q  joint position coordinates of a robot
q̇  joint velocity coordinates of a robot
q̈  joint acceleration coordinates of a robot

M�q�  mass matrix in joint space
C�q , q̇�  Coriolis and centripetal matrix in joint space

G�q�  gravitational vector of a robot
�  joint control torques
v  velocity coordinates in Cartesian space
F  constraint force in Cartesian space
J  Jacobian matrix from q̇ to v

n1  number of single-DOF joints
n1a  number of actuated single-DOF joints
n1u  number of unactuated single-DOF joints
n3  number of three-DOF spherical joints

n3a  number of actuated three-DOF spherical joints
n3u  number of unactuated three-DOF spherical

joints
m  motion degrees of freedom
nc  number of overall constraints
n  number of dimensions of a general constrained

robot
q̇a  velocity coordinates of all actuated joints
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q̇a1  dependent velocity coordinates of actuated
joints

q̇a2  independent velocity coordinates of actuated
joints

q̇u  velocity coordinates of all unactuated joints
q̇u1  dependent velocity coordinates of unactuated

joints
q̇u2  independent velocity coordinates of unactuated

joints
�a1  joint frictional forces, torques, or moments

corresponding to q̇a1
�a2  joint frictional forces, torques, or moments

corresponding to q̇a2
�u1  joint frictional forces, torques, or moments

corresponding to q̇u1
�u2  joint frictional forces, torques, or moments

corresponding to q̇u2
Ra  reordering matrix for q̇a
Ru  reordering matrix for q̇u
Ja  mapping matrix from q̇a to the nc constraints

Ja1  mapping matrix from q̇a1 to the nc constraints
Ja2  mapping matrix from q̇a2 to the nc constraints
Ju  mapping matrix from q̇u to the nc constraints

Ju1  mapping matrix from q̇u1 to the nc constraints
Ju2  mapping matrix from q̇u2 to the nc constraints
J11  mapping matrix from q̇a2 to −q̇u1
J12  mapping matrix from q̇u2 to −q̇u1
J21  mapping matrix from q̇a2 to −q̇a1
J22  mapping matrix from q̇u2 to −q̇a1
np  rank of Ju or Ju1
A  general joint space
O  general task space
S  extended subsystems space

q̇A  joint velocity coordinates in space A
�A  joint control torques in space A
�a  control torque coordinates for actuated joints
vm  independent velocity coordinates in space O
� f  constraint force coordinates in space O
�m  dynamic force coordinates in space O
Tc  mapping matrix from q̇a1 to where � f is

defined
J f  mapping matrix from q̇A to where � f is

defined
Jm  mapping matrix from q̇A to vm
Dm  dynamic force mapping matrix
BV  body frame �B� referenced and expressed lin-

ear and angular velocities
MB  mass matrix of a rigid body associated with

frame �B�
CB  skew-symmetric matrix associated with frame

�B�

GB  gravitational force vector associated with frame
�B�

BF*  net force and moment of a rigid body associ-
ated with frame �B�

�  set containing all frames each is attached to a
corresponding rigid body

�1  set containing sequential numbers of all single-
DOF joints

�3  set containing sequential numbers of all three-
DOF spherical joints

V  extended velocity coordinates of all rigid bod-
ies in space S

F*  extended net forces/moments of all rigid bod-
ies in space S

M  block diagonal matrix with MB as an element
C  block diagonal matrix with CB as an element
G  extended vector with GB as an element

MG  mass matrix of a general constrained robot
CG  skew-symmetric matrix of a general con-

strained robot
GG  vector of a general constrained robot
JO  mapping matrix connecting space A with

space O
JS  mapping matrix connecting space A with

space S
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Evaluation of the Interfacial
Strength of Layered Structures
by Indentation Method
The delamination of thin coating films from substrates is a critical issue for the reliability
of micro- and nanoelectronic devices. Indentation methods have the potential to measure
interfacial strength in micro- and nanofilm thickness coating films. In this paper, inden-
tation tests of layered structures are simulated using the damage-based cohesive zone
model. When the delamination initiates, the indentation load and depth curve tend to
deviate from the indentation load and depth curve for the perfectly bonded case. When
the interface is stiffer than the coating film, a brittlelike delamination occurs on the
interface; when the stiffness of the interface is smaller than that of the coating layer, a
ductilelike delamination occurs on the interface. The ratio of shear moduli, �int /�PI,
characterizes the delamination behavior on the interface during indentation tests. Focus-
ing on the discontinuous point during the indentation tests and introducing the balance of
energy before and after the onset of delamination, the evaluation method of the interfa-
cial strength is proposed. The proposed method can be used to estimate the interfacial
strength when the ratio of hardness and the yield stress of the coating film is 3.5
�HA /�y �4.5. �DOI: 10.1115/1.2839890�

Keywords: interface, thin film, indentation, finite element method, cohesive zone model,
delamination, interfacial strength, plastic deformation, indentation hardness

1 Introduction

The delamination of thin coating films from substrates is a criti-
cal issue for the reliability of micro- and nanoelectronic devices,
since interface failures may lead to failure of the total system. To
measure the interfacial strength between a thin film and its sub-
strate, several testing methods have been proposed, including
double cantilever beam tests, four-point flexure beam tests,
scratch tests, peel tests, and indentation tests �1–6�. More recently,
several novel techniques have been proposed to measure the in-
terfacial strength of thin films approaching nanoscale thickness
�7–15�. However, these quantitative testing methods need a espe-
cially designed specimen and it is difficult to carry out in situ
measurement of the interfacial strength for products themselves.

Micro- and nanoindentation techniques have been widely ap-
plied to evaluate the mechanical properties of thin films such as
hardness, elastic modulus, and yield strength. A comprehensive
survey of indentation methods can be found in Fischer-Cripps
�16�. Indentation methods have also been applied to measure the
adhesion strength between films and their substrates. One method
for quantitative evaluation of the thin film adhesion strength can
be found in Marshall and Evans �17�. The latter applied a linear
fracture mechanics approach and proposed a method for the de-
termination of the interfacial toughness. When the coating film is
ductile, plastic deformation occurs largely under and near the in-
denter. In those cases, the linear fracture mechanics approach can-
not be applied, since the plastic dissipation near the indenter is too
large and thin film delamination would not occur. To solve these
problems, so-called superlayer methods have been proposed by
Gerberich et al. �18�. In the latter work, the authors used a hard

thin layer on a ductile coating layer and constrained the plastic
deformation in the ductile layer in order to induce the delamina-
tion of the coating film.

During indentation tests, especially nanoindentation tests, the
only information obtained is the indentation load �P� and inden-
tation depth �h� relations �i.e., P-h curve� along with the indenta-
tion impression. Therefore, the evaluation of interfacial strength
from those limited outputs is a challenging subject. Recently, co-
hesive zone models have been applied to indentation problems.
Zhang et al. �19� have investigated the onset and propagation of
delamination of interfaces in thin film systems during indentation
by using a microwedge indenter. Li and Siegmund �20,21� have
investigated the growth of delamination under indentation loading
for strongly and weakly bonded ductile films. These evaluation
methods for interfacial strength rely on the buckling-induced
delamination of the thin film, and focus on the forces and mo-
ments acting on the delamination tip.

In this paper, we consider the energy dissipation during inden-
tation tests for a ductile coating layer on an elastic substrate and
propose an evaluation method for the interfacial strength. Inden-
tation tests of a ductile coating layer on an elastic substrate are
simulated by using the damage-based cohesive zone model
�25,26� based on Ma and Kishimoto �27�. The effects of interfacial
strength and film hardness on the evaluation results are also ex-
amined.

2 Damage-Based Cohesive Zone Model
Several cohesive laws have been proposed and successfully ap-

plied to bulk fracture problems �22–24�. To describe the damage
and failure phenomena on the interface, damage-based cohesive
zone models have been proposed �25–27�. An interfacial constitu-
tive model has been developed, which takes into consideration
thermodynamic restrictions. The details of the derivation of the
cohesive zone model �26� are omitted here, and the interface con-
stitutive relations are summarized.

When an interface deforms, as shown in Fig. 1, the opposite
points across the interfacial zone, i.e., AB, will produce a relative
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displacement, which defines an interfacial separation. The dis-
placement can be scaled by displacement components, Ut, Un, and
Ub according to the right hand Cartesian coordinate system shown
in Fig. 1. An equivalent interfacial separation is defined as

� =��Ut

�t
�2

+ � �Un	+

�n
�2

+ �Ub

�b
�2

�1�

where �t, �n, and �b are the critical interfacial separations of each
direction. The symbol of � 	+ means

�x	+ = 
x in case x � 0

0 in case x � 0
� �2�

The equivalent interfacial separation indicates the interfacial
bonding condition, that is,

0 � � � 1 ⇒ bonding
�3�

1 � � ⇒ debonding

On the basis of damage mechanics, we introduce a damage
parameter, D���, to represent the damage process due to an inter-
facial deformation.

0 � D��� � 1 �4�

where D���=0 corresponds to a virgin element and D���=1 to a
fully damaged element, in other words, to the failure of the inter-
face. The damage parameters are related to the equivalent interfa-
cial separation, �, through a damage dissipation potential �26�.

Apart from the Ma–Kishimoto model �27�, in the derivation of
the interfacial constitutive model, the Helmholtz free energy is
taken as the total energy of nonlinear springs for each direction:

��U� = Kt
0Ut

2�a

2
−

b

3�t
�Ut� +

1

4�t
2Ut

2�
+ Kn

0Un
2�a

2
−

b

3�n
Un +

1

4�n
2Un

2�H�Un� +
1

2
KnUn

2H�− Un�

+ Kb
0Ub

2�a

2
−

b

3�b
�Ub� +

1

4�b
2Ub

2� �5�

where H�Un� is the Heaviside function, Kt
0 ,Kn

0 ,Kb
0 are the initial

values of interfacial rigidities in each direction, a=1+b�0−�0
2 is

the interfacial parameter, and �0 is the damage threshold of
equivalent interfacial separation. The interfacial constitutive equa-
tions can be obtained by partially differentiating the Helmholtz
free energy with respect to the displacement in each direction.

With unloading-reloading condition, the interfacial constitutive
law can be written as �26�

Pt = Kt
01 − b��max − �0� + ��max

2 − �0
2��Ut

Pn = Kn
01 − b��max − �0� + ��max

2 − �0
2��UnH�Un� + Kn

0UnH�− Un�
�6�

Pb = Kb
01 − b��max − �0� + ��max

2 − �0
2��Ub

where �max corresponds to the maximum interfacial separation
during the loading-unloading history. Once �max reaches unity, the
interface is separated freely except for the contact friction, and the
interfacial traction and separation law becomes

Pt = �tKt
0Un sign�Ut�H�− Un�

Pn = Kn
0UnH�− Un� �7�

Pb = �bKb
0Un sign�Ub�H�− Un�

where �t ,�b denote the Coulomb friction coefficients for the tan-
gential directions.

The mechanical behaviors of the above cohesive zone model in
pure mode cases are shown in Fig. 2. Figure 2�a� corresponds to
the pure tangential deformation. As the interfacial separation in-
creases monotonically from zero in either 	 or 
 direction, the
interfacial traction rises until it reaches the maximum value. After
the traction reaches its maximum value, it begins to decrease and,
finally, the traction disappears when �Ut�=�t. The damage thresh-
old of equivalent interfacial separation, �0, affects the damage
initiation and this results in the increase of the interfacial traction.
Figure 2�b� corresponds to pure normal deformation. For the de-
formation in the 	 direction, as the interfacial separation in-
creases monotonically from zero, the interfacial traction rises until
it reaches the maximum value. After that point, the traction begins
to decrease and, finally, disappears when Un=�n. The damage
threshold of equivalent interfacial separation, �0, affects the dam-
age initiation and results in an increase in interfacial traction.
These features are the same as the pure tangential deformation
case. On the other hand, for the deformation in the 
 direction, no
damage evolution occurs and this results in a linear relation be-
tween the interfacial traction and the interfacial separation.

Fig. 1 Concept of interfacial cohesive coupling models

Fig. 2 Interfacial traction and separation relations: „a… Pure
tangential deformation case; „b… pure normal deformation case
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The decohesion energy is defined by the total energy to break
down one cohesive element and is obtained from the area of P-�
curve, that is,

Wd =�
0

1

Pd� �8�

where P is the total interfacial traction. From Eqs. �6� and �8�, the
decohesion energy is

Wd��� = Wd0� 1 +
Kn

0

Kt
0 tan2 �

1 +
�n

2

�t
2�Kn

0

Kt
0�2

tan2 �� �9�

where � is the phase angle, which is defined by the ratio of the
normal to tangential traction, �=tan−1�Pt / Pn�. Wd0 is the decohe-
sion energy in the pure normal separation case for �0=0, i.e.,

Wd0 =
1

12
Kn

0�n
2 �10�

When one cohesive element breaks down, the interface separates
and new surfaces are created. With A denoting the delamination
area, the decohesion energy can be related to the interfacial energy
release rate by

G��� =
Wd���

A
�11�

When G��� reaches the interfacial toughness, ����, interfacial
debonding occurs. The decohesion energy is a function of Kn

0 /Kt
0

and �n /�t. Figure 3 shows the decohesion energy plotted against
the phase angle in �n /�t=1 case. This figure suggests that the
decohesion energy depends on the phase angle except for the iso-
tropic interface case, Kt

0=Kn
0. To obtain a concave upward curve

of the interfacial strength, the decohesion energy for the normal
separation should be less than that for the tangential separation.
Therefore, the initial rigidities should be Kt

0Kn
0. This tendency

agrees with most experimental results for the interface toughness
versus phase angle curves �3–5,28�.

Figure 4 shows the decohesion energy versus the phase angle in
Kn

0 /Kt
0=1 case. The decohesion energy strongly depends on the

ratio of the critical separations, �n /�t, as compared with Kn
0 /Kt

0.
To obtain a concave upward curve of the interfacial strength, the
decohesion energy for the normal separation should be less than
that for the tangential separation. Therefore, the interfacial critical
separation should be �t�n.

3 Numerical Model of Indentation Test
A monolayer coating and substrate system is considered in an

axisymmetric configuration. The shape of indentation is assumed
to be a conical with a tip radius of R. The numerical model and
boundary condition are shown in Fig. 5. The coating layer and

substrate are assumed to be polyimide and silicon, respectively.
The elastic modulus, Poisson’s ratio, and yield stress are assumed
to be Ec=2.5 GPa, �c=0.42, �y

c =100 MPa for the polyimide
layer; for silicon, these values are Es=190 GPa, �s=0.23, �y

s

=7000 MPa, respectively. The stress-strain relation of polyimide
and silicon are assumed to be an elastic-perfect plastic material for
simplicity. The indenter is treated as rigid in this paper. The
boundary conditions for the numerical simulation are that the bot-
tom face of the substrate is fixed as uz�r�=0, and the axisymmetric
condition with ur�z�=0 is applied at r=0. Loading is applied by
enforced displacements of the indenter.

The isotropic cohesive zone models, K0=Kt
0=Kn

0, �c=�t=�n in
Eq. �6� are used between the film and the substrate. The interfacial
parameters are taken to be b=2, �0=0. The other parameters
K0 ,�c are changed variously. The cohesive zone models are
implemented into the finite element analysis program �ABAQUS

Ver. 6.3� through the user-defined element �UEL� subroutine. It is
noted that the numerical model is an axisymmetric configuration
and, hence, the decohesion energy depends on the distance from
the axisymmetric axis since the delamination area, A, is a function
of r. To maintain a constant interfacial strength, the interfacial
rigidities are taken as a function of r. Moreover, it is convenient to
define the equivalent interfacial shear stiffness �int, which is ob-
tained from the equilibrium condition of the shear force acting on
the interface.

�int =
16d���/2�

3�c
2 �12�

where ��� /2� is the interfacial strength for pure tangential defor-
mation, which is obtained from Eq. �11�.

Fig. 3 The dependence of Kn
0 /Kt

0 on the decohesion energy;
�n

0 /�t
0=1

Fig. 4 The dependence of �n
0 /�t

0 on the decohesion energy;
Kn

0 /Kt
0=1

Fig. 5 Numerical model of indentation test on film and sub-
strate system
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4 Numerical Results
The interfacial parameters for isotropic interface model are the

interfacial strength � and the interfacial critical displacement �c.
Note that the interfacial strength does not depend on the phase
angle in the isotropic model. In this section, the effects of these
parameters on the indentation load and depth curve are discussed.

Figure 6�a� shows the loading stage of the P-h �indentation
load-depth� curve for �c=0.01. The upper �lower� dotted line is
the case when the interface is perfectly bonding �debonding�. The
indentation load is normalized by the indentation load in the per-
fectly bonded case Pperf and indentation depth is normalized by
the film thickness t. Symbols show the effective crack length a,
which was calculated from the number of broken cohesive ele-
ments. As the interfacial strength � increases, the loading curves
approach the perfectly bonded case. When �=0.1, the cohesive
elements are gradually broken down and the indentation load-
depth curve deviates from the perfect bonding curve around h / t
=0.15. This point is slightly different from the onset of debonding,
h / t=0.2 and this difference is due to the compliance effect of
cohesive zone elements. On the contrary, pop-in behaviors �sud-
den drops� in the indentation load can be observed for the cases
�=0.3,0.5. These points correspond to the onset of debonding. At
these points, a number of cohesive elements are simultaneously
broken down as shown in Fig. 6�b� and, then, the indentation load
suddenly decreases. After the onset of debonding, the length of
interface crack increases at a constant rate as the indentation depth
increases in all cases. The pop-in behaviors can be observed only
in the case when �int /�PI�1, where �PI is the shear modulus of
the polyimide layer. This implies that when the interface is stiffer
than the coating film, a brittlelike delamination occurs on the in-
terface. On the contrary, when the stiffness of the interface is
smaller than that of the coating film, a ductilelike delamination
occurs on the interface. Therefore, the shear modulus, �int /�PI,
characterizes the delamination behavior on the interface during
the indentation tests.

Figure 7 shows the relation between the phase angle at the
interface crack tip and the effective crack length a normalized by

indentation tip radius R. At first, the interface crack propagates
under shear dominant �Mode II� condition. Then, over a /R=0.6,
the stress condition at the interface crack tip changes to mixed
mode condition. The interface parameters only affect the transi-
tion point from Mode II to mixed mode in this study.

5 Evaluation of Interfacial Strength

5.1 Elastic Film Case. From the above results, the indenta-
tion load-depth curve tends to deviate from the perfectly bonded
case when interfacial delamination occurs. In the following sec-
tion, we focus on this transition phenomenon and evaluate the
interfacial strength from the energy balance before and after the
onset of the delamination.

When the coating film is assumed to be elastic, the typical
indentation load-depth curve obtained is shown in Fig. 8�a�. The
corresponding equivalent interfacial separation is shown in Fig.
8�b�. In these figures, “Point A” indicates conditions just before
the onset of delamination, while “Point B” indicates those just

Fig. 6 „a… Indentation load and depth curve for �c=0.01. Sym-
bols show the effective crack length during the indentation. „b…
Equivalent interfacial separation just before and after
debonding.

Fig. 7 The phase angle of interface crack tip and effective
crack length

Fig. 8 „a… Indentation load and depth curve for the case of �
=0.1, �c=0.005, and �int /�PI=1.51. Polyimide layer is assumed
to be elastic material. The indentation load-depth curve for
Model B „precracked model… coincides with the original model
at Point B. „b… Equivalent interfacial separation at Points A
and B.
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after delamination onset. To estimate the strain energy stored at
Point B, we introduce another numerical model �Model B�, in
which the broken cohesive elements at Point B are eliminated.
This precracked model describes the interface condition when the
indentation loading stops and unloading starts at Point B. In in-
dentation experiments, the crack length may be measured by op-
tical observation or other methods. The indentation load-depth
curve for “Model B” is shown in Fig. 8�a�. This indentation curve
coincides with the result of original model, “Model A,” on Point
B. We then introduce the energy balance before and after the onset
of delamination. At Point A, the work done by indentation is cal-
culated from the area under the indentation load-depth curve, SA.
This energy is stored as the elastic strain energy of the film and its
substrate �U�E

A and the dissipation energy of the cohesive elements
�UI

A�, i.e., SA=UE
A+UI

A. At Point B in Model B, the work done by
indentation can be obtained from the area under the indentation
load-depth curve, SB. This energy is stored in the elastic strain
energy of the film and substrate �UE

B� and the dissipation energy of
the cohesive elements �UI

B�, i.e., SB=UE
B+UI

B. The energy release
rate during the delamination �A→B� is described as

G =
UA + WAB − UB

Ad
�13�

where WAB is the work done by the indenter and Ad is the delami-
nation area during the A→B transition. If we assume that the
damage condition of cohesive elements in Model A is the same as
that in Model B, i.e., UI

A�UI
B, the energy release rate is approxi-

mately expressed as

G =
UE

A + WAB − UE
B

Ad
=

�SA − UI
A� + WAB − �SB − UI

B�
Ad

�
SA + WAB − SB

Ad
�14�

This numerator corresponds to the area of OAB as shown in Fig.
8�a�. The ratio of the interfacial strength �defined by the cohesive
elements� to the obtained energy release rate, G /�, is equal to 1.1.
Thus, this method predicts the interfacial strength within 10%
accuracy.

5.2 Elastic-Plastic Film Case. The above method is now ap-
plied to an elastic-plastic film on a substrate. The material prop-
erties of film and substrate have already been described in Sec. 3.
The interfacial material properties are the same as for the previous
cases. The indentation load and depth curves are shown in Fig. 9.
Compared to Fig. 8�a�, the indentation load is lower than in the

elastic film case due to the plastic deformation of the polyimide
layer. As with the elastic film case, we focus on the transition
phenomenon to evaluate the interfacial strength.

At Point A in Fig. 9, the work done by indentation is calculated
from the area under the indentation load-depth curve �SA� and is
stored in the elastic strain energy of the film and substrate �UE

A�,
the plastic dissipation �UP

A� in the film, and the dissipation energy
in the cohesive elements �UI

A�, i.e., SA=UE
A+UP

A +UI
A. At Point B

in Model B, the work done by indentation can be obtained from
the area under the indentation load-depth curve �SB� and is stored
in the elastic strain energy of the film and substrate �UE

B�, the
plastic dissipation �U�P

B in the film, and the dissipation energy in
the cohesive elements �UI

B�, i.e., SB=UE
B+UP

B +UI
B. The energy

release rate during the delamination �A→B� is given by

G =
UE

A + WAB − UE
B

Ad
=

WAB

Ad
+

SA − SB

Ad
−

UI
A − UI

B

Ad
−

UP
A − UP

B

Ad

�15�

where WAB is the work done by the indenter during the A→B
transition. The first and second terms on the right side can be
calculated from the indentation load-depth curve. If we assume
that the damage condition of the cohesive elements and the plastic
zone size in Model A is the same as those in Model B, i.e., UI

A

�UI
B and UP

A �UP
B, the energy release rate can be approximated

by

G =
WAB + SA − SB

Ad
�16�

This numerator corresponds to the area of OAB, as shown in Fig.
9. The G /� ratio, defined as above, is 1.1. Thus, this method also
predicts the interfacial strength within 10% accuracy under the
above assumptions.

6 Discussion
To investigate the validity of the proposed method, numerical

simulation under different interfacial parameters was carried out
and the results are shown in Fig. 10. The vertical axis is the G /�
ratio, as defined in Sec. 5.1. The horizontal axis is the ratio of the
yield stress of the film to the hardness at the onset of the delami-
nation, HA, which is defined by HA= PA /AA. AA is the projected
area when the indentation load is PA. From this figure, the ob-
tained results agree well with the given interfacial strength when
3.5�HA /�y �4.5. On the contrary, when HA /�y is larger than
4.5, the obtained results overestimate the interfacial strength. This
is because the plastic dissipation in the film is large enough that
the assumption that the plastic dissipations are the same before
and after the delamination is no longer valid. In those cases, it is
necessary to evaluate the fourth term on the right side in Eq. �15�
properly. When HA /�y is less than 3.5, the obtained result under-
estimates the interfacial strength. This is because the interfacial

Fig. 9 Indentation load and depth curve for �=0.1, �c=0.005,
�int /�PI=1.51; elastic-plastic film case. Polyimide layer is as-
sumed to be elastic perfectly plastic material. Compared to Fig.
8„a…, the indentation load is lower due to the plastic deforma-
tion of the polyimide layer.

Fig. 10 The effects of interfacial strength on the evaluation
results
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strength is so weak that delamination of the film occurs at an early
stage of the indentation tests. In those cases, the plastic dissipa-
tions that accompany the film delamination need to be considered
�21�.

7 Conclusion
In this paper, indentation testing of layered structures was stud-

ied by using the damage-based cohesive zone model. From the
indentation load and depth curve, an evaluation method for the
interfacial strength is proposed. In this study, the following can be
drawn.

1. The damage-based cohesive zone model was applied to the
indentation simulation and the effects of cohesive param-
eters on the indentation response were examined. When the
delamination initiated, the indentation load and depth curve
were found to deviate from the perfect bonding curve.

2. When the interface was stiffer than the coating film, a
brittlelike delamination occurred on the interface; when the
stiffness of the interface was smaller than that of the coating
layer, a ductilelike delamination occurred on the interface.
The ratio of shear moduli, �int /�PI, characterizes the delami-
nation behavior on the interface during indentation tests.

3. At first, the interface crack initiates and propagates under
shear dominant �Mode II� condition. Then, over around
a /R=0.6, the stress condition at the interface crack tip
changes to mixed mode condition. The interface parameters
only affect the transition point from Mode II to mixed mode
condition.

4. Focusing on the discontinuous point during the indentation
tests and introducing the energy balance before and after the
onset of delamination, an evaluation method of the interfa-
cial strength was proposed.

5. The proposed method can be used to estimate the interfacial
strength when the ratio of the indentation hardness to the
yield stress of the film is 3.5�HA /�y �4.5. The plastic de-
formation around the indenter and the delamination behavior
of the film were found to influence the evaluation results.
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Transient Wave Propagation in
Multilayered Viscoelastic Media:
Theory, Numerical Computation,
and Validation
This paper extends the classical problem of transient wave propagation in multilayered
solids to transient wave propagation in multilayered viscoelastic solids. Laplace and
Hankel transforms and the transfer-matrix approach are used in the formulation together
with the elastic-viscoelastic correspondence principle in linear viscoelasticity. The de-
rived formula provides a theoretical basis to allow effective and efficient numerical
algorithms to be developed. MATLAB is used to develop a computer program DYNALAYERT

that implements the theory developed. The numerical results are compared with the
existing data available in literature and those obtained from finite element analysis using
ANSYS. Excellent agreement has been observed from comprehensive comparisons, which
verifies the validity of the theory, algorithm, and computer program developed in this
study. The conclusion and findings of this study may result in a number of engineering
applications, such as nondestructive evaluation of highway and airport pavements, pe-
troleum exploration, countermine technology, geophysical inversion, structural health
monitoring, and vehicle weigh-in-motion systems. �DOI: 10.1115/1.2839906�

Keywords: wave equation, viscoelasticity, elastodynamics, integral transform, finite ele-
ment analysis

1 Introduction
Wave propagation, in a multilayered solid under dynamic loads,

has long been a subject of great interest due to its relevance to a
number of applications in the field of geophysics, seismology,
petroleum exploration, and civil engineering �1–6�. This is wit-
nessed by the well-known works of Thomson �7�, Haskell �8,9�,
Dunkin �10�, Harkruder �11�, Apsel �12�, Kausel and Roesset �13�,
Kausel and Peek �14�, and Luco and Aspel �15�. Recent studies on
this subject can be found in Stokoe et al. �3�, Pak and Guzina �16�,
Roesset et al. �17�, Sun �5,18,19�, Sun and Deng �20,21�, Ditri
�22�, Sun and Greenberg �23�, Liang and Zeng �24�, and Sun et al.
�6�. Methods for dealing with wave propagation in a multilayered
solid primarily include ray expansion, finite element method, and
transfer-matrix and stiffness-matrix approaches.

Ray expansion coupled with the Cagniard–de Hoop technique
has been developed �25–28�. The technique based on surface
wave synthesis and ray expansions is appealing owning to its
physical interpretation that can be given to the different terms
involved. However, they do not provide a complete representation
of the response of the layered solid. The purely analytical treat-
ment using Cagniard–de Hoop technique becomes too complex to
be tractable when the number of layers is large �15,29�.

Finite element methods �FEMs� offer a purely numerical alter-
native for tackling the problem �30�. FEMs differentiate the lay-
ered solid into a large number of meshes and solve a set of
coupled ordinary differential equations in which the time integra-
tion can be evaluated using direct integration methods such as the
Newmark method or the Wilson method �5,31�. The treatment of
infinite boundary in FEM is implemented using either one of the
two alternatives: artificial boundary or the boundless element. The
benefit of FEM is that complex constitutive models, as well as

irregular geometric conditions, can be conveniently handled in a
unified framework. However, the disadvantage of FEM is also
apparent. On one hand, the use of an artificial boundary introduces
false wave reflection, while the use of the boundless element in-
troduces unpredictable accuracy reduction. On the other hand,
solving a wave propagation problem involving a large number of
meshes can be much more time consuming than its static counter-
part. This makes FEM an inefficient alternative, less attractive
than the analytical treatment of the subject.

Approaches that lead to a complete description of wave propa-
gation in a multilayered solid while having a good efficiency are
the transfer-matrix approach �7,8,10� and the stiffness-matrix ap-
proach �13,14,32�. The former relates a transformed response at
the bottom of a layer, in the form of a transfer matrix, to a corre-
sponding quantity at the top of a lower layer. The latter expands
the transcendental functions in a stiffness matrix in terms of wave
number and takes up to the second order of wave number as an
approximation. Although both approaches are essentially the
same, the stiffness-matrix approach requires each layer to be thin
in order to achieve necessary accuracy.

Previous studies on wave propagation in multilayered solids
only treat elastic materials �7,13,15,16,22,33�. What is missing in
the literature is the consideration of viscoelastic materials in the
study of wave propagation in multilayered solids. In reality vis-
cosity, as reflected by the damping effect, exists in all physical
systems. For instance, strong viscoelasticity of asphalt concrete
pavement in summer should not be ignored in the modeling and
analysis �11,36,43�. Viscoelastic waves differ significantly from
elastic waves, as both material and geometric dispersions are pos-
sible �34�. This may result in completely distinct wave propaga-
tion patterns �20,21,35�. Recently, Benatar et al. �36� simplified
the Pochhammer frequency equation and formulated corrections
for geometric dispersion for the phase velocity and attenuation.
Zhao and Gary �37� presented a three-dimensional solution of the
longitudinal wave propagation in an infinite linear viscoelastic
cylindrical bar.
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An original contribution of this study is to incorporate various
forms of viscosity in the analysis of wave propagation in multi-
layered solids. In addition to the consideration of viscoelastic ma-
terials, this paper deals with transient rather than steady-state
wave propagation. Transient wave propagation has been a subject
less frequently studied in literature due to its technical difficulties.
Instead of using the Fourier transform valid for steady-state analy-
ses, the Laplace transform is adopted here since it treats transient
phenomena naturally by taking into account initial condition of
the wave propagation problem. Furthermore, efficient fast algo-
rithms are developed in this paper for numerically evaluating tran-
sient wave propagation with comprehensive numerical compari-
sons.

The remainder of this paper is organized as follows. Section 2
presents physical models and governing equations of multilayered
elastic solids considered in this study. Section 3 applies various
integral transforms and their inversions to solve the transient re-
sponse of multilayered elastic solids using the transfer-matrix ap-
proach. Section 4 describes constitutive equations of viscoelastic
models and transient solutions of multilayered viscoelastic solids
obtained using the elastic-viscoelastic corresponding principles.
Sections 6 and 7 introduce fast algorithms for implementing the
Laplace transform and its inversion, and the Hankel transform and
its inversion, respectively. Section 8 provides a comparison be-
tween static solution obtained here and that of FEM. Sections 9
and 10, respectively, use an elastic half space and a multilayered
viscoelastic solid for validation. The result of using the derived
formulation and that of using FEM are compared with each other.
Section 11 draws conclusions.

2 Governing Equations of Multilayered Elastic Solids
An effective approach for solving a viscoelastic problem is to

seek the solution of its elastic counterpart, and then apply the
elastic-viscoelastic correspondence principle to update the elastic
solution to obtain the viscoelastic solution �38�. In other words,
transient wave propagation in multilayered elastic solids is the
basis for the analysis of transient wave propagation in multilay-
ered viscoelastic solids. In this section, we only consider a multi-
layered elastic solid.

The material of the layer is characterized as follows: Within
each layer, the solid is isotropic and homogeneous, and has uni-
form thickness and identical material properties, while these prop-
erties vary for different layers. Each layer is assumed to extend to
infinity horizontally. Figure 1 depicts a multilayered solid made of
linear elastic material with Young’s modulus Ei, Poisson’s ratio �i,
and density �i for each layer. In this study, we consider an axi-
symmetric, distributed load. It is convenient to represent the gov-
erning equation in a cylindrical coordinate system �r ,� ,Z�. Be-

sides the global cylindrical coordinate system �r ,� ,Z�, local
cylindrical coordinate systems �ri ,�i ,zi� are employed as well for
the ith layer. The relationship between global and local coordinate
systems is ri=r ,�i=�, and zi=Z−hi, in which hi are distances
between the surface of the multilayered solid and the upper inter-
face of the ith layer. For the purpose of convenience, unless oth-
erwise necessary, the subscript i is omitted in the following deri-
vation. Beneath the Nth layer, two physical models can be used: a
half space extended to infinity vertically and very stiff bedrock.
Because a half space can be treated as a special case of bedrock
model when the thickness of the Nth layer is set to infinity, only
the bedrock model is presented here.

The motion of a multilayered elastic solid is governed by Navi-
er’s equation �33�

��2F + �� + �� � � · F + �f = �
�2F

�t2 �1a�

or equivalently

�� + 2�� � � · F − � � � � � F + �f = �
�2F

�t2 �1b�

where � and � are Lame elastic constants, respectively, � is the
mass density, F is the displacement vector, and f is the body force.
Body force only needs to be considered to describe the earthquake
or explosion source and for the very lowest frequency
��0.01 Hz� seismic waves �39�. For the homogeneous equation
of motion, the body force can be ignored, that is, f=0. The two
Lame’s constants � and � can also be represented in terms of
Young’s elastic modulus E and Poisson’s ratio �.

� =
E�

�1 + ���1 − 2��
�2a�

� =
E

2�1 + ��
�2b�

Equation �1a� and �1b�, when applied to the ith layer, yields two
wave equations for each layer:

�cd
2 − cs

2�
��

�r
+ cs

2��2u −
u

r2� − ü = 0 �3a�

�cd
2 − cs

2�
��

�z
+ cs

2�2w − ẅ = 0 �3b�

where u=u�r ,z , t� and w=w�r ,z , t� are displacements of the ith
layer along r and z directions, respectively, cd=���+2�� /� and
cs=�� /� are dilatational and shear wave velocities, respectively,
and one and two dots in �3a� and �3b� stand for first and second
derivatives with respect to time t, respectively. Constitutive equa-
tions of linear elastic solids read

�rz = �� �u

�z
+

�w

�r
� �4a�

	z = �� + 2�
�w

�z
�4b�

Stresses and displacements of the solids need to satisfy boundary
conditions at z=zb,

�rz�r,z,t� = �rz�r,zb,t� �r,z� � S	 �5a�

	z�r,z,t� = 	z�r,zb,t� �r,z� � S	 �5b�

u�r,z,t� = u�r,zb,t� �r,z� � Su �5c�

Fig. 1 A multilayered solid with a bedrock
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w�r,z,t� = w�r,zb,t� �r,z� � Su �5d�
For a transient problem, stresses and displacements also need to
satisfy initial conditions

u�r,z,0+� = u0�r,z� �6a�

w�r,z,0+� = w0�r,z� �6b�

u̇�r,z,0+� = u̇0�r,z� �6c�

ẇ�r,z,0+� = ẇ0�r,z� �6d�
Equations �3a�, �3b�, �4a�, �4b�, �5a�–�5d�, and �6a�–�6d� are

linear partial differential equations, and constitute a complete
mathematical description of elastodynamic wave equations for
each layer of the multilayered media. Integral transformation is an
effective method for solving this type of problems as they convert
partial differential equations into differential equations and/or al-
gebraic equations, of which the solution can be easily obtainable.
This method also gives rise to meaningful physical interpretation
of the constructed solution since the solution can be expressed in
terms of a fundamental solution �the Green’s function� �5,23�.

3 Transient Response of a Multilayered Elastic Me-
dium

Without loss of generality, in this study, it is assumed that the
multilayered elastic medium be at rest initially, yielding the fol-
lowing initial condition:

u0�r,z� = u̇0�r,z� = w0�r,z� = ẇ0�r,z� = 0 �7�
Define the Laplace transform and its inversion as follows �40,41�:

f̃�q� =�
0




f�t�e−qtdt �8a�

f�t� =
1

2�i�
�−i


�+i


f̃�q�eqtdq �8b�

where q is the complex frequency corresponding to time t. When
the Laplace transform is taken with respect to depth z, the corre-
sponding vertical wave number is denoted as . Define a �th order
Hankel transform of f�r� and its inversion as follows �40,41�:

f̄�s� =�
0




rf�r�J��sr�dr �9a�

f�r� =�
0




s f̄�s�J��sr�ds �9b�

where J� is the Bessel function of the first kind of order �, and s
is the radial wave number corresponding to depth z.

For each single layer �e.g., the ith layer�, apply the Laplace
transform with respect to time t, the Hankel transform with re-
spect to radius r, and the Laplace transform with respect to depth
z, respectively. After these integral transforms, Eqs. �3a� and �3b�
become two algebraic equations and can be solved with simple
mathematical manipulation �24,33,42�.

uD̃ =
	cs

2suD zo − �cd
2 − 2cs

2�wD zo +
1

�
�Dzo
�cd

2s2 − q2 − cs
22� + �cd

2 − cs
2�s	cd

2swD zo + �cd
2 − cs

2 −
�

�
�uD zo +

1

�
	D zo


�cs
2s2 − q2 − cd

22��cd
2s2 − q2 − cs

22� + �cd
2 − cs

2�22s2 �10a�

wD̃ =

�cs
2s2 − q2 − cd

22�	cd
2swD zo + �cd

2 − cs
2 −

�

�
�uD zo +

1

�
	D zo
 − 	cs

2suD zo − �cd
2 − 2cs

2�wD zo +
1

�
�Dzo
�cd

2 − cs
2�s

�cs
2s2 − q2 − cd

22��cd
2s2 − q2 − cs

22� + �cd
2 − cs

2�22s2 �10b�

Here, uD � ,0 ,q�, wD � ,0 ,q�, 	D � ,0 ,q�, and �Drz� ,0 ,q� are denoted
as uD zo, wD zo, 	D zo, and �Dzo, respectively. The solution given by �10a�
and �10b� is a displacement field in the transformed domain �i.e.,
the frequency-wave-number domain� and needs to be converted
back to the original space-time domain using inverse integral
transforms.

Equations �10a� and �10b� can be decomposed into additive
terms of fractions, whose inverse Laplace transforms with respect
to radial wave number s can be evaluated analytically. The process
of partial fraction expansions and inverse Laplace transform is
tedious and omitted. A MATLAB code containing symbolic opera-
tion of inverse Laplace transform is given in Appendix A for the
verification of the result presented in this paper. Here, we only
present the displacement field and the stress field after the inver-
sion.

�
uD �,z,q�
wD �,z,q�
�Drz�,z,q�
	D z�,z,q�

� = ���z���
uD �,0,q�
wD �,0,q�
�Drz�,0,q�
	D z�,0,q�

� �11�

in which transfer function matrix ���z�� is given by

���z�� = ���,z,q�� = �
�11 �12 �13 �14

�21 �22 �23 �24

�31 �32 �33 �34

�41 �42 �43 �44

� �12�

The entries of the above matrix are given in Appendix B.
Since we omitted the subscript i in foregoing derivations, depth

z in �11� should virtually be zi. Note that the left-hand side of �11�
is displacement and stress fields in the Hankel–Laplace domain at
depth zi, a vertical distance from a point of interest to the upper
interface of the ith layer in a local coordinate system, while the
right-hand side of �11� is displacement and stress fields in the
Hankel–Laplace domain at the upper interface zi=0 in the local
coordinate system.

Matrix equation �11� implies that, in a local coordinate system
of the ith layer, displacement and stress fields at any points in the
ith layer can be represented in terms of their counterparts
uD � ,0 ,q�, wD � ,0 ,q�, �Dz� ,0 ,q�, and 	D z� ,0 ,q� at the upper inter-
face of the ith layer. Instead of focusing on a single layer, now
examine the entire model of a multilayered system, as shown in
Fig. 1. The relationship between a local coordinate system
�ri ,zi ,�i� of the ith layer and a global coordinate system �r ,Z ,��
of the entire multilayered solid is
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Z = zi + hi �13�

As a result, displacement and stress fields at the upper interface of
the ith layer uD � ,0 ,q�, wD � ,0 ,q�, �Drz� ,0 ,q�, and 	D z� ,0 ,q� in a
local coordinate system are indeed uD � ,hi ,q�, wD � ,hi ,q�,
�Drz� ,hi ,q�, and 	D z� ,hi ,q� in the global coordinate system, while
the transfer function matrix ���zi�� in �11� should be replaced by
���Z−hi�� in the global coordinate system. As for the left-hand
side of �11�, we simply replace z by Z in displacement and stress
fields as both variables z and Z refer to the same point of interest.
Now, Eq. �11� in the global coordinate system reads

�
uD �,Z,q�
wD �,Z,q�
�Drz�,Z,q�
	D z�,Z,q�

� = ���Z − hi���
uD �,hi,q�
wD �,hi,q�
�Drz�,hi,q�
	D z�,hi,q�

� �14�

When a dynamic load is applied on the surface of the multilay-
ered system, the boundary condition is typically given in terms of
stress. As a result, one would like to express the displacement
field in terms of the stress field. For this purpose, define displace-

ment and stress fields as �UD �Z��= �uD � ,Z ,q� ,wD � ,Z ,q�� and

�TD �Z��
= ��Drz� ,Z ,q� ,	D z� ,Z ,q��, respectively. Equation �14� can be re-
written as

�UD �Z�,TD �Z��T = ���Z − hi���UD �hi�,TD �hi��T �15�

where T stands for transpose. For the interface between the ith
layer and the �i−1�th layer, define Z=hi

+ the plane belonging to
the �i−1�th layer, and Z=hi

− the plane belonging to the ith layer.
At plane Z=hi+1

+ , Eq. �15� becomes

�UD �hi+1
+ �,TD �hi+1

+ ��T = ����hi���UD �hi
−�,TD �hi

−��T �16�

where �hi is the thickness of the ith layer, �hi=hi+1
+ −hi. When a

continuous interface condition is assumed, that is, �UD �hi
−��

= �UD �hi
+�� and �TD �hi

−��= �TD �hi
+��, Eq. �16� can be expanded as fol-

lows:

�UD �hi+1
+ �,TD �hi+1

+ ��T = ����hi���UD �hi
−�,TD �hi

−��T

= ����hi���UD �hi
+�,TD �hi

+��T

= ����hi������hi−1������hi−2�� ¯

�����h2������h1���UD �h1�,TD �h1��T

�17�

So, Eq. �15� becomes

�UD �Z�,TD �Z��T = ���Z − hi������hi−1�� ¯ ����h2������h1��

��UD �h1�,TD �h1��T �18�

where hi�Z�hi+1. Equation �18� means that, for each layer, the
transformed displacements and stresses at the bottom interface can
be expressed in terms of their counterparts at the upper interface.

When a bedrock exists underneath the Nth layer �the �N+1�th
layer�, the displacement field is set to zero on the surface of bed-
rock at Z=hN+1, that is, u�r ,Z , t�Z=hN+1

=0 and w�r ,Z , t�Z=hN+1
=0.

When a half-space model is used as a foundation model, one may
simply set u�r ,Z , t�Z=
=0 and w�r ,Z , t�Z=
=0. Since the latter can
be treated as a special case of bedrock model of which the Nth
layer has a finite thickness, only the former is studied in this
paper. Consequently, the transformed displacement field
uD � ,hN+1 ,q�=0 and wD � ,hN+1 ,q�=0, or equivalently,

�UD �hN+1�� = �uD �,hN+1,q�,wD �,hN+1,q�� = �0,0� �19�

The transformed displacement field �UD �hi��T can be represented

as a function of the transformed stress field �TD �hi��. So, the bound-
ary condition, often given as a known stress distribution on the
surface of the multilayered solid, can be eventually incorporated
into the analysis. As a result, displacement and stress fields in the
Laplace–Hankel domain can be ultimately represented in terms of
stresses �in the Laplace–Hankel domain� on the surface of the
multilayered solid, which is virtually the boundary condition
�24,42�.

�UD �Z�,TD �Z��4�1
T = ���Z��4�2�TD �h1��2�1

T �20�

where

���Z�� = ���Z − hi������hi−1�� ¯ ����h2������h1��	�R1�
I



is a 4�2 matrix;

�I� = 	1 0

0 1



is a 2�2 unit matrix; for 1� i�N, �Ri�=−K11
−1K12 is a 2�2

matrix and

�RN+1� = 	0 0

0 0



in which

�K� = 	K11 K12

K21 K22

 = ����hN������hN−1�� ¯ ����hi+1������hi��

in which �K� is a 4�4 matrix, and �K11�, �K12�, �K21�, and �K22�
are 2�2 block matrices each;

����hi�� = 	�11
i �12

i

�21
i �22

i 

where

��11
i � = 	�11��hi� �12��hi�

�21��hi� �22��hi�

 , ��12

i � = 	�13��hi� �14��hi�
�23��hi� �24��hi�



��21

i � = 	�31��hi� �32��hi�
�41��hi� �42��hi�



and

��22
i � = 	�33��hi� �34��hi�

�43��hi� �44��hi�



Apply inverse Laplace transform and inverse Hankel transform
of order 1 to uD � ,Z ,q� and �Drz� ,Z ,q�, and of order zero to
wD � ,Z ,q� and 	D z� ,Z ,q�, Eq. �20� produces


u�r,Z,t�
w�r,Z,t�
�rz�r,Z,t�
	z�r,Z,t�

� =
1

2�i�
�−i


�+i
�
0




�J�r�����Z���TD �h1��Tdeqtdq

�21�

where

�J�r�� = �
J1�r� 0 0 0

0 J0�r� 0 0

0 0 J1�r� 0

0 0 0 J0�r�
�

and
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���Z�� = �
�1�Z�
�2�Z�
�3�Z�
�4�Z�

� = �
�11�Z� �12�Z�
�21�Z� �22�Z�
�31�Z� �32�Z�
�41�Z� �42�Z�

�
in which ��1�Z��, ��2�Z��, ��3�Z��, and ��4�Z�� are 1�2 matri-
ces, respectively. With these notations, Eq. �21� can be decom-
posed into

u�r,Z,t� =
1

2�i�
�−i


�+i
�
0




J1�r���1�Z����Drz�h1�,	D z�h1��Tdeqtdq

�22a�

w�r,Z,t� =
1

2�i�
�−i


�+i
�
0




J0�r���2�Z����Drz�h1�,	D z�h1��Tdeqtdq

�22b�

�rz�r,Z,t� =
1

2�i�
�−i


�+i
�
0




J1�r���3�Z����Drz�h1�,	D z�h1��Tdeqtdq

�22c�

	z�r,Z,t� =
1

2�i�
�−i


�+i
�
0




J0�r���4�Z����Drz�h1�,	D z�h1��Tdeqtdq

�22d�
The integrands of �21� and �22a�–�22d� play the role of Green’s
function as appearing in the analysis of linear systems �3,18�.

4 Transient Response of a Multilayered Viscoelastic
Medium

4.1 Elastic-Viscoelastic Correspondence Principle. Stress-
strain relationships of viscoelastic materials can be described in
two ways: mechanical models and creep-compliance curves �43�.
If one description is available, the other can be determined
uniquely as well. Here, the mechanical model is adopted. In this
study, we considered four types of viscoelastic models: Kelvin
model, Maxwell model, Burgers model, and the generalized
model �43,44�. The generalized viscoelastic model contains three
other models as special cases. Figure 2 depicts these viscoelastic
models using springs and dashpots. In Fig. 2, 	 is the stress,
E0 ,E1 , . . . ,En are Young’s elastic moduli corresponding to spring
constants, while T0 ,T1 , . . . ,Tn are retardation times corresponding
to dashpot damping coefficients �0 ,�1 , . . . ,�n through the rela-
tionship Tj =� j /Ej.

Transient responses of multilayered viscoelastic solids can be
obtained by applying the elastic-viscoelastic correspondence prin-
ciple to transient response of multilayered elastic solids, which
has been obtained in previous sections. Specifically, according to
the correspondence principle of elastic-viscoelastic theory �38�,
the viscoelastic solution of a linear system can be obtained as
indicated in Fig. 3.

The equivalent modulus Ee for a specific viscoelastic model is

defined through stress-strain relationship Ee=	 /�. Therefore, Ee
is no longer a constant but a time dependent function. Coefficients
that involve modulus E are �ij �i , j=1, . . . ,4�, �̇ij �i=1,2, and j
=1, . . . ,4�, �2, �2, p2, cd, and cs. Before taking inverse Laplace
transform with respect to time t, Young’s modulus E needs to be

replaced by Ẽe. The rest of this section dedicates to identify Ẽe
corresponding to a specific viscoelastic model.

4.2 Kelvin Model. A Kelvin model is a combination of spring
and dashpot in parallel, as depicted in Fig. 2�a�. Both the spring
and the dashpot experience identical strain �, and the total stress is
the sum of the two stresses

	 = E1� + �1
��

�t
= E1�� + T1

��

�t
� �23�

where T1=�1 /E1 is the retardation time parameter. Define differ-
ential operator D=� /�t. Equation �23� can be expressed as

	 = Ee� �24�

where equivalent modulus Ee=E1+�1D=E1�1+T1D�. For each
layer, equivalent elastic modulus Ee in the Laplace transform do-
main becomes

Ẽe = E1 + �1q = E1�1 + T1q� �25�

where q is the complex frequency in the Laplace transform do-
main corresponding to time t.

4.3 Maxwell Model. A Maxwell model is a combination of
spring and dashpot in series, as indicated in Fig. 2�b�. Both the
spring and the dashpot experience identical stress and the total
strain is the sum of two strains

� =
	

E0
+

	

�0
�

�t

=
	

E0
+

	

�0D
=

	

E0
+

	

T0E0D
�26�

where T0=�0 /E0. The equivalent elastic modulus derived from
�26� is

Ee =
	

�
=

E0T0D

T0D + 1
�27�

In the Laplace transform domain, the equivalent elastic modulus
becomes

Ẽe =
E0T0q

T0q + 1
�28�

4.4 Burgers Model. A Burgers model is a combination of
Maxwell and Kelvin models in series, as indicated in Fig. 2�c�.
The total strain is composed of three parts

Fig. 2 A schematic plot of four viscoelasic models

Fig. 3 Procedures of applying the elastic-viscoelastic corre-
sponding principles
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� =
	

E0
+

	

E1 + �1
�

�t

+
	

�0
�

�t

= 	�T0D + 1

E0T0D
+

1

E1�T1D + 1��
�29�

The equivalent elastic modulus derived from �29� is

E* =
	

�
= 	T0D + 1

E0T0D
+

1

E1�T1D + 1�
−1

�30�

In the Laplace transform domain, the equivalent elastic modulus
becomes

Ẽ* = 	T0q + 1

E0T0q
+

1

E1�T1q + 1�
−1

�31�

4.5 Generalized Model. Figure 2�d� shows a generalized
model that can be used to characterize a wide variety of viscoelas-
tic material. It is a combination of one Maxwell model and n
Kelvin models in series. The total strain is composed of �n+1�
parts

� = 	
T0D + 1

E0T0D
+ 	�

i=1

n
1

Ei�TiD + 1�
�32�

The equivalent elastic modulus derived from �32� is

E* =
	

�
= 	T0D + 1

E0T0D
+ �

i=1

n
1

Ei�TiD + 1�
−1

�33�

In the Laplace transform domain, the equivalent elastic modulus
becomes

Ẽ* = 	T0q + 1

E0T0q
+ �

i=1

n
1

Ei�Tiq + 1�
−1

�34�

5 Fast Evaluation of Laplace Transform and Its Inver-
sion

Due to the involvement of viscoelastic materials and the exis-
tence of multiple layers in the considered model, the evaluation of
the solution is too complicated to permit analytical computation.
Therefore, numerical computation has to be developed. In addi-
tion, the derived formula must be examined by comparing the
existing solution with results obtained using other approaches.
Because the evaluation of Eq. �21� involves intensive numerical
computation of Laplace and Hankel transforms and their inver-
sions, fast algorithms of these integral transforms are used in or-
der to achieve high computational efficiency.

The Laplace transform of an arbitrary dynamic load exerted on
the surface of a multilayered solid needs to be numerically evalu-
ated. The evaluation of Laplace transform as defined in Eq. �8a�
can be implemented using numerical integration �e.g., the Simp-
son and Lobatto method�, provided that the transient dynamic load
is truncated at a certain point in time. Specifically, in this study, a
truncated form of Laplace transform is evaluated using recursive
adaptive Lobatto quadrature in a MATLAB environment. Numerical
evaluation of inverse Laplace transform as given in �8b� and of
inverse Hankel transform is more time consuming than the evalu-
ation of Laplace transform. To improve computational efficiency,
an efficient algorithm given by Brancik �45� that takes advantage
of the fast Fourier transform �FFT� algorithm is adopted here for
implementing numerical evaluation of Laplace transform. The ac-
curacy of the method can be improved by using � algorithm.

To start, a discrete Laplace transform can be approximated by

f̃ k = Ck�2 Re	�
n=0




FnEn
k
 − F0� �35�

f̃ k = f̃�kT�, Ck =
�

2�
eckT, Fn = F�c − jn��, En

k = e−jkTn�

�36�

where k=0,1 , . . . ,N−1, and T and �=2� / �NT� are sampling pe-
riods in original and transform domains, respectively. Equation
�35� corresponds to a Fourier series approximation of the original
signal f�t� when the error can theoretically be controlled on the
interval t� �0;NT�. Practically, to suppress an increased error at
the end of this interval, the required maximum time is supposed to
be tm= �M −1�T, with M =N /2 as the number of resultant com-
puted points, which leads to the condition of choosing �=��1
−1 /M� / tm. The coefficient c can be determined from

c � � −
�

2�
ln Er �37�

where Er denotes a desired relative error.
To minimize the error toward this theoretical value, the infinite

sum in �35� must be evaluated as much accurately as possible. The
solution then consists of three steps. First, this sum is evaluated
using only first N terms when a FFT algorithm can be applied
�i.e., N=2m, where m is an integer�. Second, after truncating the
result of the FFT operation to have only a length M, the � algo-
rithm is applied to give a precision to the resultant sum. The �
algorithm uses only a few additional terms above those N used by
the FFT algorithm; however, the sum becomes as if it were evalu-
ated using greatly more terms. Finally, the result of the
�-algorithm application is substituted into �35� to finish the com-
putation. Expressing these operations in vector form, �35� can be
written as

f̃M = CM � �2 Re�E�FFT�FN��� − F0
M� �38�

where particular vectors of upper indexed lengths are created ac-
cording to �36�, namely, for k=0,1 , . . . ,M −1, n=0,1 , . . . ,N−1.
Especially, F0

M is the M-element constant vector of value c. E�·�
designates an operator of the � algorithm �including the operation
of N→M vector length reduction�. The symbol � means Had-
amard product of matrices �also called element-by-element prod-
uct in MATLAB environment�.

The principle of the � algorithm can be explained by means of
a lozenge diagram in Fig. 4. The first column is formed with
�−1

�s�=0M, s=1,2 ,3 , . . ., where 0M means an M-element zero vec-
tor. The second column represents partial sums computed recur-
rently as

�0
�s+1� = �0

�s� + FN+sEN+s
M s = 0,1,2, . . . �39�

where En
M is an M-element vector created according to the expo-

nential term En
k, for k=0,1 , . . . ,M −1 and a given n, and the initial

�0
�0� term is the result of the FFT operation truncated to have the

length M. The leftover columns are computed using the formula

�r+1
�s� = �r−1

�s+1� + ��r
�s+1� − �r

�s��−1 r,s = 0,1,2, . . . �40�
when the inversion operation is supposed to run componentwise.
Thus, the sequence of successive approximations �0

�0� ,�2
�0� ,�4

�0� , . . .
usually converges much more quickly than the original sequence
of partial sums. To start a computation using 2P+1 partial sums,
the �2P

�0� term is the required result of the � algorithm. This algo-
rithm could be numerically instable if P is chosen too large. Based
on a number of trials, it is found that P=2 or P=3 is a good
choice.

6 Fast Evaluation of Hankel Transform and Its Inver-
sion

In Eq. �21�, high oscillation patterns of integral kernels due to
the presence of Bessel functions impose a computational chal-
lenge. A significant amount of computation time would be re-
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quired if this integral were to evaluated using conventional meth-
ods, such as the Simpson and the Gaussian algorithms, in order to
achieve a specified accuracy. Candel �46� proposed a fast algo-
rithm for numerically evaluating Hankel transforms, which has
the same order of operations comparable to that of a two-
dimensional FFT.

Hankel transform of function f�x� with order k is defined by

Fk�r� =�
0




f��Jk�r�d �41�

Taking an asymptotic expansion

e1/2z�t−1/t� = �
k=−


+


tkJk�z� �42�

let t=ei� and z=r. Multiply both sides of �42� by f��, and
integrate it from 0 to 
.

�
0




eir sin �f��d = �
k=−


+


eik�Fr�r� �43�

Based on the theory of Fourier series expansion, �43� implies that

Fr�r� =
1

2�
�

0

2�

��r sin ��e−ik�d� �44�

where function � is defined as

���� =�
0




ei�f��d �45�

which can now be evaluated efficiently using FFT algorithm. As a
result, instead of using �41� directly, the Hankel inverse transform
Fr�r� can be equivalently evaluated as the FFT of �45� and the

integration of �44� from 0 to 2�. Based on previous analyses, a
computer program DYNALAYERT is developed in the MATLAB envi-
ronment to implement the analysis of transient wave propagation
in multilayered viscoelastic solids.

7 Validation Through Static Solution of a Multilay-
ered Elastic Solid

When the external dynamic load exerted on the surface of the
multilayered solid is a Heaviside step function as shown in Fig. 5,
transient wave propagation dissipated after a sufficiently long du-
ration. The transient dynamic response of the solid should even-
tually die out and degenerate to a static solution of situation when
a static load with the same magnitude as that in Fig. 5 is applied
on the surface of the solid. Static responses of a multilayered solid
can be viewed as an asymptotic solution of transient wave propa-
gation. The static solution obtained using the derived formula is
compared with that of FEM. For the purpose of comparison, the
dynamic load specified in Fig. 5 and a four-layer elastic solid on
top of a bedrock with properties given in Table 1 are used, in
which parameter a is the radius of exerted circular load. ANSYS, a
widely used software package for finite element analysis, is
adopted as a tool for computing static displacement using FEM.

Since the bedrock is a rigid body and does not allow any dis-
placement, it is implemented in ANSYS by setting displacements at
the bottom of the fourth layer to be zero along the x, y, and z
directions. In theory, the multilayered solid extends horizontally to
infinity, which is implemented in ANSYS by choosing a cylinder of
finite size along the radial dimension. This unavoidably will cause
additional computational error. To mitigate such an error, the hori-
zontal size of the cylinder should be much larger relative to the
size of the exerted circular load. However, the larger the cylinder,
the longer the computation time will take as it requires more ele-
ments and computational resource, if the same level of precision
is to be maintained. After comparing a number of cylinders with
different radii, it was found that, for load size of radius a
=0.15 m, when the radius of the cylinder exceeds 8 m, the results
of finite element analysis become stable and no apparent changes
can be found. In addition, displacements of the side surface of the
finite-size cylinder along the x and y directions are set to be zero
in ANSYS in order to mimic the infinite horizontal boundary con-
dition of the multilayered solid.

Figure 6 shows the finite element model used in ANSYS. The
upper plot in Fig. 6 shows a side view of the model. To increase
numerical precision while maintaining computational burden,
along the vertical z direction, the upper layers use dense elements
while the lower layers use spare elements. Along the radial r
direction, the inner part of the cylinder uses dense elements while

Fig. 4 The 	-algorithm lozenge diagram

Fig. 5 Heaviside step function type of dynamic load used in
static analysis
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the outer part of the cylinder uses spare elements. The lower plot
in Fig. 6 shows an overview of the model in which it can be seen
that the horizontal boundary condition of the finite-size cylinder is
completely restricted to simulate zero horizontal displacement of
an infinite multilayered solid. Figure 7 shows surface deflection
�vertical displacement� of the solid as a function of distance from
the center of the load. In this figure, a continuous curve is ob-
tained theoretically using a degraded dynamic solution �i.e., static
solution� of this paper, while discrete dots are obtained from AN-

SYS. These results match very well with each other, indicating the
correctness of the analytical derivation under static load, which
verifies, in part, the theory and formula developed in this study.

8 Validation Through Transient Wave Propagation in
a Half-Space Elastic Solid

An elastic half space is a special case of an elastic multilayered
solid when material properties of each layer are identical. When
the exerted transient load is a Heaviside function and has an infi-
nite radius as its spatial distribution, dynamics of multilayered
solids becomes a two-dimensional transient problem involving
only the depth and the time. In this loading scenario, the analytical
transient solution for an elastic half space is available in the lit-
erature �33�, which is used to compare with solutions of this paper
and the finite element analysis. Because the model used in the
latter two approaches is associated with a bedrock foundation, the
bedrock should be set to be deep enough, so that the effect of this
rigid layer on dynamic surface displacement is negligible. In this
study, the layer thickness on top of bedrock is set to be 1 m to
mimic a half space, which has been shown to be able to provide
an adequate precision.

The transient dynamic load used here is a Heaviside function
given in Fig. 8. The pressure on the top of the cylinder is set to be
zero at time t=0 s and then it instantly jumps to 600 kPa and
remains at the same magnitude. Table 2 gives parameters used for
transient loading and the elastic half space. In Table 2, h0, h0.25,
h0.75, and h0.75 correspond to four different depths from the sur-
face, and t=0.0137 s represents the time duration within which
the dynamic response is computed.

Figure 9 shows the finite element model used for numerical
computation, in which the upper figure illustrates a side view of
the finite cylinder, while the lower figure gives an overview of the
cylinder where the divided elements can be seen. While perform-
ing finite element analysis, element SOLID 45 in ANSYS is used
�47�. The analysis object is a cylinder of radius 0.1 m and depth
1 m. The length of element edge, a parameter used in specifying
the element in ANSYS, is set to be 0.01 m. Divisions of elements
are automatically calculated and rounded up to the next integer
from line lengths. For the boundary conditions, displacements of
the bottom of the layer along the x, y, and z directions are all set
to zero, and the horizontal displacements of the side surface of the
cylinder along x and y directions are set to zero.

Figure 10 shows the displacements at four different depths h0,
h0.25, h0.75, and h0.75 obtained from three methods, respectively. In
this figure, solid lines represent theoretical results given by Erigen
and Suhubi �33�. Discrete dots represent results derived from the
theory of this paper. Discrete dots with cross represent numerical
results obtained from finite element analysis using ANSYS. The
derived analytical results in this paper match theoretical results
surprisingly well, while numerical results of finite element analy-
sis are close to those of this paper and theoretical results for
depths h0, h0.5, and h0.75. For depth h0.25, the numerical results
deviate a little from results obtained using other two approaches
within time duration �0.005 s, 0.01 s�, which can be caused by
numerical computation error, limited size of the cylinder as well
as the number of elements in finite element analysis. In general, it
can be stated that results obtained from different approaches are

Table 1 Parameters of a four-layer elastic solid

Parameters Values Parameters Values

E1 0.1794�1010 N /m2 �0.26 Gpsi� E2 0.138�1010 N /m2 �0.2 Gpsi�
E3 0.0138�1010 N /m2 �20 kpsi� E4 0.0055�1010 N /m2 �8 kpsi�
�1 0.35 �3 0.35
�3 0.35 �3 0.3
�1 140 pcf �2242.6 kg /m3� �2 125 pcf �2002.3 kg /m3�
�3 125 pcf �2002.3 kg /m3� �4 110 pcf �1762 kg /m3�

�h1 0.1524 m �6 in.� �h2 0.2032 m �8 in.�
�h3 0.3048 m �12 in.� �h4 0.762 m �30 in.�
	0 1.259�105 N /m2 �P=2000 lb� a 0.15 m

Fig. 6 The finite element model used in ANSYS for static
analysis
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very close to each other, verifying the correctness and accuracy of
the theory and derivation in this study.

9 Verification of Transient Wave Propagation in Mul-
tilayered Viscoelastic Solids

The previous comparisons validate the derivation and compu-
tation of this paper for multilayered elastic solids. A more exten-
sive comparison is needed to examine the analysis of multilayered
viscoelastic solids, of which no analytical results have been given
in the literature. As such, only the result obtained from finite ele-
ment analysis of multilayered viscoelastic solids can be used as a
reference for comparison with the result obtained using
DYNALAYERT.

9.1 Specifying Constitutive Models of Viscoelastic Materi-
als in ANSYS. First of all, various constitutive models of viscoelas-
tic material used in DYNALAYERT have to be modeled properly and
consistently in ANSYS in order to make a meaningful comparison.
Three methods are used in ANSYS to represent a viscoelastic ma-

terial �47�: the generalized Maxwell model, the Prony series, and
the user defined model. The generalized Maxwell model is
adopted here because all four viscoelastic models in Fig. 2 can be
treated as a special case of the generalized Maxwell models.

In ANSYS, the stress function of a viscoelastic material using the
generalized Maxwell model representation is given in an integral
form. The constitutive equation for an isotropic viscoelastic ma-
terial in the context of small strain theory can be written as �47�

	 =�
0

t

2G�t − ��
de

d�
+ I�

0

t

K�t − ��
d�

d�
d� �46�

where 	 is the Cauchy stress; e and � are the deviated and volu-
metric parts of the strains; G�t� and K�t� are the shear and bulk
relaxation kernel functions, respectively; t is the present time and
� is the time argument; and I represents the unit tensor. The ma-
terial model is available in viscoelastic elements VISCO88, and
VISCO89 for small deformation viscoelasticity and elements
LINK180, SHELL181, PLANE182, PLANE183, SOLID185,

Fig. 7 Comparison between theoretical and numerical solutions of
static loading

Fig. 8 Heaviside step function type of dynamic load used in half-space
analysis
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SOLID186, SOLID187, BEAM188, and BEAM189 for small and
large deformation viscoelasticity �ANSYS 2003�.

For viscoelastic elements VISCO88 and VISCO89, the material
properties are expressed in integral form �46� using the following
representation of the kernel function �ANSYS 2003�:

G��� = G
 + �
i=1

nG

Gie
�−�/�i

G� �47a�

K��� = K
 + �
i=1

nK

Kie
�−�/�i

K� �47b�

Gi = Ci�G0 − G
� �48a�

Ki = Di�K0 − K
� �48b�

where � is the reduced or pseudotime; nG and nK are the numbers
of Maxwell elements used to approximate the shear relaxation
kernel and the bulk relaxation kernel; Ci and Di are coefficients
associated with the instantaneous response for shear behavior and
bulk behavior; G0 and K0 represent the initial shear modulus and
the initial bulk modulus; and G
 and K
 represent the final shear
modulus and the final bulk modulus; and �i

G and �i
K are coeffi-

cients associated with a discrete relaxation spectrum in shear and
in bulk, respectively. The number of Maxwell elements used for
volumetric behavior nK and the number of Maxwell elements used
for shear behavior nG need not to be the same, nor do coefficients
�i

G and �i
K �47�. They are chosen to be the same because in this

study, we assume identical viscoelastic behavior for the shear and
bulk responses. Since VISCO88 is a two-dimensional element and
VISCO89 is a three-dimensional element, the latter is employed
here.

According to viscoelasticity theory, a viscoelastic material is
often described by one of the following three equivalent integral
forms:

	�t� = �0E�t� +�
0

t

E�t − t��
d��t��

dt�
dt� �49a�

	�t� = ��t�E�0� +�
0

t

��t��
dE�t − t��
d�t − t��

dt �49b�

	�t� =�
t�=−


t=+


E�t − t��d��t�� �49c�

If no initial strain exists in the material, the time dependent stress
response is given by the so-called Boltzmann superposition inte-
gral

	�t� =�
0

t

E�t − t��
d��t��

dt�
dt� �50�

In order to use ANSYS to simulate the viscoelastic material and
compare with the result derived from previous sections, it is nec-
essary to represent the known relaxation modulus in Boltzmann
superposition integral in terms of shear and bulk moduli used in
ANSYS. In ANSYS, a generalized Maxwell model and �47a� and
�47b� is specified by up to 95 coefficients. The first 45 coefficients
are related to thermal effect and therefore are set to zero. The
remaining 50 coefficients are related to viscoelasticity and can be
determined by deriving �47a� and �47b� from the relaxation modu-
lus of a specific viscoelastic model �e.g., Maxwell model� in Bolt-
zmann superposition integral form.

For a Maxwell viscoelastic model, the relaxation modulus is
given by E�t�=E0e−t/T0 �44�. Thus,

G�t� =
E�t�

2�1 + ��
=

E0

2�1 + ��
e−t/T0 �51a�

K�t� =
E�t�

3�1 − 2��
=

E0

3�1 − 2��
e−t/T0 �51b�

where � is the Poisson ratio and assumed to be constant. Compar-
ing �51a� and �51b� with �47a� and �47b�, the following results are
found:

G
 = 0, C1 = 1, G0 =
E0

2�1 + ��
, �1

G = T0, nG = 1

K
 = 0, D1 = 1, K0 =
E0

3�1 − 2��
, �1

K = T0, nK = 1

Table 2 Parameters of an elastic half space

Parameters Values Parameters Values

E 2�108 Pa � 0.25
H 1 m � 1800 kg /m3

	 6�105 Pa r 10 m
h0 0 m h0.25 0.25 m

h0.5 0.5 m h0.75 0.75 m
t 0.0137 s

Fig. 9 The finite element model used in ANSYS for mimicking an
elastic half space
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For a Kelvin viscoelastic model, the relaxation modulus E�t�
=E1+�1��t�, where ��t� is the Dirac delta function. Following the
relaxation modulus representation in ANSYS �47�, in this study,
E��t�=E1+ �E0−E1�e−t/T=E1�1+ �E0 /E1−1�e−t/T� is used to ap-
proximate the relaxation modulus involving the Dirac delta func-
tion. Letting �0


E��t�dt=�0

E�t�dt, it follows that �E0 /E1−1�T

=�1 /E1=T1. The ration E0 /E1 should be larger enough to provide
an accurate approximation of the real relaxation modulus. In this
study, we set E0 /E1=8.000000001�109. Therefore, we have 8
�109T=T1 and E��t�=E1+ �8.000000001�109E1

−E1�e−t/�T1/8�109�. Now,

G�t� =
E��t�

2�1 + ��
=

E1

2�1 + ��

+ �8.000000001 � 109E1

2�1 + ��
−

E1

2�1 + ���e−t/�T1/8�109�

�52a�

K�t� =
E�t�

3�1 − 2��
=

E1

3�1 − 2��

+ �8.000000001 � 109E1

3�1 − 2��
−

E1

3�1 − 2���e−t/�T1/8�109�

�52b�

Comparing �52a� and �52b� with �47a� and �47b�, the following
results are obtained:

G
 =
E1

2�1 + ��
, C1 = 1, G0 =

8.000000001 � 109E1

2�1 + ��

�1
G =

T1

8 � 109 , nG = 1

K
 =
E1

3�1 − 2��
, D1 = 1, K0 =

8.000000001 � 109E1

3�1 − 2��

�1
K =

T1

8 � 109 , nK = 1

For a Burgers viscoelastic model, the relaxation modulus
E�t�=1 /�p1

2−4p2��q1−�q2�e−�t− �q1−�q2�e−�t�, where �

=1 /2p2�p1−�p1
2−4p2� and �=1 /2p2�p1+�p1

2−4p2� �note that
����, p1= ��0 /E0�+ ��1 /E1�+ ��0 /E1�, p2= ��0 /E0���1 /E1�, q1
=�0, q2=�0�1 /E1. Therefore, we have

G�t� =
E�t�

2�1 + ��
=

1

2�1 + ���p1
2 − 4p2

��q1 − �q2�e−�t

− �q1 − �q2�e−�t� �53a�

K�t� =
E�t�

3�1 − 2��
=

1

3�1 − 2���p1
2 − 4p2

��q1 − �q2�e−�t

− �q1 − �q2�e−�t� �53b�

Comparing �53a� and �53b� with �47a� and �47b�, the following
results are found:

G
 = 0, C1 =
q1 − �q2

�� − ��q2
, C2 =

�q2 − q1

�� − ��q2

G0 =
�� − ��q2

2�1 + ���p1
2 − 4p2

�1
G =

1

�
, �2

G =
1

�
, nG = 2

K
 = 0, D1 =
q1 − �q2

�� − ��q2
, D2 =

�q2 − q1

�� − ��q2

K0 =
�� − ��q2

3�1 − 2���p1
2 − 4p2

�1
K =

1

�
, �2

K =
1

�
, nK = 2

To summarize, Table 3 lists coefficients corresponding to the
generalized Maxwell model representation in ANSYS for specify-

Fig. 10 Comparisons of transient displacement responses of an elastic
half space to a two-dimensional Heaviside dynamic load using three dif-
ferent methods
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ing Maxwell model, Kelvin model, and Burgers model in Fig. 2.
Coefficients of coefficient numbers not listed in Table 3 are all
zeros.

9.2 Numerical Comparison and Verification. In this com-
parison, a four-layer solid identical to that of the previous section
is used, except that in the former, the material property is vis-

coelastic. In ANSYS �47�, a finite-size cylinder of radius 8 m and of
depth 1.4224 m is used to model the four-layer viscoelastic solid,
which is large enough relative to the loading area. The mesh grid
of the cylinder is shown in Fig. 11. Displacements at the bottom
of the layer along the x, y, and z directions are set to zero, and the
horizontal displacements of the side surface of the cylinder along
x and y directions are set to zero. In this comparison, the used
transient load is a circular load of radius 0.15 m. As plotted in Fig.
12�a�, it takes an impulse function 	=�te−�t as its magnitude, in
which coefficients �=2.4491�108 and �=150. In three vis-
coelastic models �Kelvin, Maxwell, and Burgers�, the parameters
are set to T0=T1=0.02 s. Moreover, in Burgers model, the moduli
of two springs are set to be equal to half of the elastic modulus of
the same layer.

Transient dynamic displacements of two Points A and B on the
surface of the multilayered solid are evaluated using DYNALAYERT

and ANSYS, respectively. Point A is located exactly at the center of
the exerted impact load, while Point B is apart from the center of
the load at a distance of 0.91 m. It is found that the number of
iterations has a higher effect on computational accuracy than that
of elements, especially for the Kelvin model. In this comparison,
the total analysis duration is set to 0.12 s. Two numbers of itera-
tions are used: 128 iterations for Maxwell model and Burgers
model, and 256 iterations for Kelvin model, respectively.

Figure 12�b�, 8�c�, and 8�d� show the comparison using
DYNALAYERT and ANSYS. Almost perfect consistency between the
result of this paper and that of finite element analysis is observed
for all three viscoelastic models. This further proves the validity
of the theory and the software developed in this paper. In addition,
it should be stressed that computational efficiency of DYNALAYERT

is much higher than that of ANSYS. For instance, it took
DYNALAYERT and ANSYS �with 2000 elements� 8 min and 686 min
to run this case, respectively. Even when reducing the number of
finite elements to 920, ANSYS still requires 65 min of execution
time in order to achieve the same level of accuracy.

10 Conclusions
Based on the theory and formula developed, numerical algo-

rithms are designed and a computer program DYNALAYERT is devel-
oped in MATLAB environment to implement efficient numerical
computation. The results obtained in this paper have been vali-
dated by comparing with results available in the literature and
results obtained from the finite element analysis using ANSYS. The
following concluding remarks can be made.

Table 3 Coefficients of the generalized Maxwell model in ANSYS †47‡

Coefficient
No. in
ANSYS

Maxwell
model

Kelvin
model

Burgers
model

46 E0 / �2�1+��� 8�109E1 / �2�1+��� ���−��q2� / �2�1+���p1
2−4p2�

47 0 E1 / �2�1+��� 0
48 E0 / �3�1−2��� 8�109E1 / �3�1−2��� ���−��q2� / �3�1−2���p1

2−4p2�
49 0 E1 / �3�1−2��� 0
50 1 1 2
51 1 1 �q1−�q2� / ���−��q2�
52 0 0 ��q2−q1� / ���−��q2�
61 T0 T1 / �8�109� 1 /�
62 0 0 1 /�
71 1 1 2
76 1 1 �q1−�q2� / ���−��q2�
77 0 0 ��q2−q1� / ���−��q2�
86 T0 T1 / �8�109� 1 /�
87 0 0 1 /�

Fig. 11 The finite element model for viscoelastic multilayered
solid analysis
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• The derived formulation and developed computer program
theory can be used easily to construct and compute Green’s
function �fundamental solution� of multilayered viscoelastic
solid, which is of paramount importance to many applica-
tions.

• Because we use Laplace transform rather than Fourier trans-
form in the analysis as well as the adoption of fast algorithm
for evaluating Laplace and Hankel transforms, transient
wave propagation in viscoelastic solids with any specific
initial condition and arbitrary dynamic load can be effec-
tively and efficiently analyzed.

• Different types of viscoelastic models considered here allow
any complicated viscoelastic constitutive relationship to be
captured or approximated.

• The result of this study can result in a number of engineer-
ing applications, such as nondestructive evaluation of high-
way and airport pavements, petroleum exploration, counter-

mine technology, geophysical inversion, structural health
monitoring, and vehicle weigh-in-motion systems.
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Appendix A
A MATLAB code for evaluating inverse Laplace transform is given below, in which Cs, Cd, S, Xi, Q, Rho, Uzo, Wzo, Tzo, Dzo, Mu,

Lam, Z, Ubar, Wbar, U, and W represent cS, cd, s, , q, �, uD2o, wD 2o, �D2o, 	D 2o, �, �, z, �D̃ , wD̃ , uD , and wD , respectively.

Fig. 12 Comparison of a four-layer viscoelastic solid
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syms Cs Cd S Xi Q Rho Uzo Wzo Tzo Dzo Mu Lam Z

Ubar = ��Csˆ2*S*Uzo − �Cdˆ2 − 2*Csˆ2�*Xi*Wzo + 1/Rho*Tzo�*�Cdˆ2*Sˆ2 − Qˆ2 − Csˆ2*Xiˆ2� . . . ��

+ �Cdˆ2 − Csˆ2�*Xi*S*�Cdˆ2*S*Wzo + �Cdˆ2 − Csˆ2 − Lam/Rho�*Xi*Uzo + 1/Rho*Dzo��/ . . .

��Csˆ2*Sˆ2 − Qˆ2 − Cdˆ2*Xiˆ2�*�Cdˆ2*Sˆ2 − Qˆ2 − Csˆ2*Xiˆ2�� + . . .

��Cdˆ2 − Csˆ2�ˆ2*Xiˆ2*Sˆ2�;

Wbar = ��Csˆ2*Sˆ2 − Qˆ2 − Cdˆ2*Xiˆ2�*�Cdˆ2*S*Wzo + �Cdˆ2 − Csˆ2 − ���
��Lam/Rho�*Xi*Uzo + 1/Rho*Dzo� . . .

−��Csˆ2*S*Uzo − �Cdˆ2 − 2*Csˆ2�*Xi*Wzo + 1/Rho*Tzo�*�Cdˆ2 − Csˆ2�*Xi*S�/ . . .

��Csˆ2*Sˆ2 − Qˆ2 − Cdˆ2*Xiˆ2�*�Cdˆ2*Sˆ2 − Qˆ2 − Csˆ2*Xiˆ2�� + . . .

��Cdˆ2 − Csˆ2�ˆ2*Xiˆ2*Sˆ2�;

U = ilaplace�Ubar,S,Z�

W = ilaplace�Wbar,S,Z�

Appendix B

�11 =
�2 + 2

p2 cosh��z� −
22

p2 cosh��z� �B1a�

�12 =
2�

p2 sinh��z� −
��2 + 2�

�p2 sinh��z� �B1b�

�13 =
1

�
	 �

p2 sinh��z� −
2

�p2 sinh��z�
 �B1c�

�14 =
1

�
	 

p2 cosh��z� −


p2 cosh��z�
 �B1d�

�21 =
2�

p2 sinh��z� −
��2 + 2�

�p2 sinh��z� �B2a�

�22 =
�2 + 2

p2 cosh��z� −
22

p2 cosh��z� �B2b�

�23 =
1

�
	 

p2 cosh��z� −


p2 cosh��z�
 �B2c�

�24 =
1

�
	 �

p2 sinh��z� −
2

�p2 sinh��z�
 �B2d�

�2 = 2 +
q2

cs
2 �B3a�

�2 = 2 +
q2

cd
2 �B3b�

p2 =
q2

cs
2 �B3c�

�31 = �	 ��2 + 2�2

�p2 sinh��z� −
42�

p2 sinh��z�
 �B4a�

�32 = �
2��2 + 2�

p2 �cosh��z� − cosh��z�� �B4b�

�33 =
�2 + 2

p2 cosh��z� −
22

p2 cosh��z� �B4c�

�34 =
��2 + 2�

�p2 sinh��z� −
2�

p2 sinh��z� �B4d�

�41 = �
2��2 + 2�

p2 �cosh��z� − cosh��z�� �B5a�

�42 = �	 ��2 + 2�2

�p2 sinh��z� −
42�

p2 sinh��z�
 �B5b�

�43 =
��2 + 2�

�p2 sinh��z� −
2�

p2 sinh��z� �B5c�

�44 =
�2 + 2

p2 cosh��z� −
22

p2 cosh��z� �B5d�
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Modeling of a One-Sided Bonded
and Rigid Constraint Using Beam
Theory
In beam theory, constraints can be classified as fixed/pinned depending on whether the
rotational stiffness of the support is much greater/less than the rotational stiffness of the
freestanding portion. For intermediate values of the rotational stiffness of the support, the
boundary conditions must account for the finite rotational stiffness of the constraint. In
many applications, particularly in microelectromechanical systems and nanomechanics,
the constraints exist only on one side of the beam. In such cases, it may appear at first
that the same conditions on the constraint stiffness hold. However, it is the purpose of this
paper to demonstrate that even if the beam is perfectly bonded on one side only to a
completely rigid constraining surface, the proper model for the boundary conditions for
the beam still needs to account for beam deformation in the bonded region. The use of a
modified beam theory, which accounts for bending, shear, and extensional deformation in
the bonded region, is required in order to model this behavior. Examples are given for
cantilever, bridge, and guided structures subjected to either transverse loads or residual
stresses. The results show significant differences from the ideal bond case. Comparisons
made to a three-dimensional finite element analysis show a good agreement.
�DOI: 10.1115/1.2839898�

1 Introduction
If a beam is attached at one or more ends to a support, the

nature of the boundary condition at the support depends on the
relative stiffness of the beam to that of the support. In particular, if
the rotational stiffness of the support is much greater/less than the
rotational bending stiffness of the beam, then the constraint is
modeled as fixed/pinned. An example of such a classical fixed
constraint is shown in Fig. 1�a�. For intermediate values of rota-
tional stiffness, the appropriate boundary condition must include
the rotational compliance of the support.

However, there are many applications in which the beam is
constrained only on one side �Figs. 1�b� and 1�c��. Typically, such
configurations occur in microelectromechanical systems �MEMS�
and nanomechanics applications. These beams are fabricated on a
substrate after which a release process is used where a portion of
the substrate material is removed by selective etching. The result-
ing cantilever �Fig. 1�b�� or “fixed-fixed” beam �i.e., a bridge, Fig.
1�c�� is constrained on its lower surface only. If the rotational
stiffness of the substrate is much greater than that of the beam, it
would be tempting to model these constraints as fixed. However,
the one-sided nature of the constraint introduces some rotational
compliance into the structure, which can affect the modeling of
the constraint.

It will be shown here that a bending moment M0 applied to the
fixed �anchor� portion of the beam will produce a finite angle of
rotation even for a perfect bond to an ideally rigid substrate �Fig.
2�a��. This rotation angle cannot be predicted by classical beam
theory in which cross sections are forced to remain perpendicular
to the beam centroidal axis. Thus, in this paper, we implement a
modified beam theory that accounts for deformations due to bend-
ing, shear, and extension in the anchor region and is therefore able
to model the rotational stiffness in the anchor region. The correc-
tion factors that account for displacements due to rotational com-
pliance are determined and found to depend on the ratio of the

length of the suspended section of the beam to its thickness. These
corrections are typically comparable to or greater than the addi-
tional corrections due to shear deformation in the suspended por-
tion of the beam. The results obtained compare favorably with a
three-dimensional finite element analysis.

A similar mechanism occurs due to residual stresses �Fang and
Wickert �1�; Greek and Chitica �2��. Suppose that a uniform ten-
sile prestress is present in a thin film that has been deposited on a
substrate �Fig. 2�b��. After patterning and release of a cantilever,
the bottom surface of the film in the anchor region is constrained
against horizontal displacement, but the top surface is not. Thus,
the top surface contracts, whereas the bottom surface is con-
strained, resulting in what has been appropriately called a “take-
off” angle ��0� �1�, as illustrated in Fig. 2�c�. In the freestanding
portion, the beam simply contracts uniformly with little conse-
quence. In Ref. �1�, plane strain finite element modeling was used
to develop curve-fit equations for the take-off angle. We will use a
modified beam theory for a cantilever and show that it gives simi-
lar results to the finite element analysis of Ref. �1�. We then apply
our model to determine deflections due to a residual stress in a
bridge structure.

2 Beam Theory With Bending, Shear, and Extensional
Deformation

An element through the thickness of the beam of differential
length dx is shown in Fig. 3. By using the equilibrium of the
differential element �Fig. 3�a��,

dQ

dx
= − p,

dM

dx
= Q − T

dw

dx
+

qh

2
,

dT

dx
= − q �1�

is obtained. Then, using the deformation relations �e.g., Refs.
�3,4��, the following are obtained:

Q = �2GA�dw

dx
+ ��, M = EI

d�

dx
, T = EA

du

dx
�2�

In Eqs. �1� and �2�, T is the axial force, Q is the internal shear
force, M is the internal bending moment, p and q are the applied
vertical and horizontal loads per unit length, respectively, u �Fig.
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3�b�� and w are the axial and transverse displacements of the beam
axis in the x and z directions, respectively, � �Fig. 3�c�� is the
rotation angle of the cross section, E is the Young’s modulus, �2 is
the shear correction factor �3�, G is the shear modulus, which is
related to the Young’s modulus and Poisson’s ratio by E=2G�1
+��, and I=bh3 /12 is the second moment of the rectangular cross-
sectional area A of height h and width b.

Combining Eqs. �1� and �2� gives

d

dx
��2GA�dw

dx
+ ��� + p = 0 �3�

d

dx
�EI

d�

dx
� − �2GA�dw

dx
+ �� + T

dw

dx
=

qh

2
�4�

d

dx
�EA

du

dx
� = − q �5�

Note that the modified beam theory given by Eqs. �3�–�5� includes
deformations due to bending, extension, and shear, all three of
which will be needed to describe the deformation in the anchor
region.

3 Anchor Region
We now consider the anchor region, i.e., the portion of the

beam which is bonded on one side only to the rigid surface �Figs.
1�b� and 1�c��. The constraint conditions for the anchor region are

w = 0, u −
h

2
� = 0, x � 0 �6�

i.e., there is zero transverse displacement, and points on the bot-
tom surface of the beam do not move horizontally. Combining
Eqs. �4�–�6� for a uniform rectangular cross-section beam gives

EAh2

3

d2�

dx2 − �2GA� = 0 �7�

Solving for � yields

��x� = C1 sinh �x/h + C2 cosh �x/h �8�

where the constants of integrations are yet to be determined and

� =	 3�2

2�1 + ��
�9�

The effect of a bending moment applied to the anchor region
�Fig. 2�a�� can now be determined. However, if a bending moment
M =EI�d� /dx� at x=0+ is specified, then by the third equation in
Eq. �2� and the second in Eq. �6�, an unknown reactive axial force
F0 at the anchor corner �x=0−� also exists. Thus, applying

EA
du

dx



x=0−
= F0, �M�x=0 = EI
d�

dx



x=0−
= M0 − F0h/2

�10�

and

EA
du

dx



x=−a

= 0, �M�x=−a = EI
d�

dx



x=−a

= 0 �11�

leads to

Fig. 1 „a… A beam with a classical fixed support. „b… A cantile-
ver beam with a one-sided fixed support. „c… A beam with one-
sided fixed supports at each end, i.e., a bridge structure.

Fig. 2 „a… A one-sided support subjected to an applied mo-
ment M0. „b… A thin film under a uniform tensile prestress be-
fore release. „c… The anchor and the free portions of a cantile-
ver beam after release from the substrate.

Fig. 3 Differential elements for a modified beam theory that
includes extensional, shear, and bending deformations
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C1 = 3M0/EAh2�, C2 = C1/tanh��a/h� �12�
Thus, a beam that is perfectly bonded on one side only to an
ideally rigid surface behaves as a rotational spring with finite stiff-
ness given by

Kt =
M0

��0�
=

EAh�

3
tanh

�a

h
�13�

4 Examples for Structures With Transverse Loads

4.1 Cantilever Beam. Consider first a cantilever beam with a
concentrated load at its end �Fig. 1�b��. The rotation of the fixed
end will be equal to �0= PL /Kt, and thus the end deflection will
increase by �0L= PL2 /Kt. Hence,

w�L� =
PL3

3EI
�1 +

�1 + ��
2�2 � h

L
�2

+
3

2
�� �14�

where

� =
h/L

2� tanh��a/h�
�15�

In Eq. �14�, the first term is due to cantilever bending, the second
term is the usual correction due to shear deformation of the free
portion of the cantilever �3�, and the third term is due to the
rotational compliance of the support. Note that the classical shear
correction term varies as the square of h /L, whereas the rotational
stiffness term varies directly as h /L.

In Fig. 4, the importance of shear deformation and rotational
compliance �for a long bond length, i.e., a�h� is shown, each
compared to the end deflection due to bending, as functions of the
length-to-thickness ratio. Also shown is the total correction due to
the combined effects of shear deformation and rotational compli-
ance. Thus, these results are the second �for shear� and third �for
rotation� terms of Eq. �14� for a Poisson’s ratio of �=0.3, which
leads to �2=0.850 �3� and ��0.990. For a completely fixed end,
the effect of shear deformation is only about 3.1% for L /h=5.
However, the rotational compliance of the constraint has a 15.1%
effect compared with bending for a total correction of 18.2%.

Also shown in Fig. 4 are numerical results of a finite element
simulation using the three-dimensional 20-node solid 95 elements
of ANSYS®. These elements were distributed uniformly along the
length, width, and thickness directions, with an element length no
greater than one-fifth the height of the square cross section. The
overlap length a was taken to be equal to the suspended length of
the beam L. Convergence was assured by approximately doubling
the number of elements until the deflection changed by less than

1%, although, on average, the deflection changed by about 0.3%
upon convergence. This procedure resulted in a minimum of 9662
elements �longer beams required more elements�. As can be seen,
there is a good agreement with the finite element analysis, which
displays somewhat greater displacements. It is emphasized that
the curves shown in Fig. 4 are corrections to the classical beam
theory. A comparison of the end deflections for L /h=20, 15, 10, 5,
and 3.5 gives differences between the finite element analysis and
the modified beam theory of 2.0%, 2.5%, 4.0% 7.4%, and 9.9%,
respectively. It is noted that the modified beam theory does not
include thickness deformation, which may contribute to the small
discrepancy with the finite element analysis.

Although the effect of rotational compliance is greater for
shorter bond lengths, that dependence is not strong for reasonable
values of a /h. For example, when a /h=2, the rotational stiffness
decreases by only 3.7%. It is noted that for a�h, Eq. �15� be-
comes �=h /2�L.

4.2 Bridge Structure. A similar procedure can be used for
the bridge structure �Fig. 1�c��, which, for a classical two-sided
constraint, corresponds to a fixed-fixed beam. The algebra is more
complicated and is omitted for brevity. The result is

w�0� =
PL3

192EI
1 +

8�1 + ��
�2 � h

L
�2

+
3�

1 + �
� �16�

where, again, the first term is due to bending, the second is due to
shear, and the third is due to rotational compliance. It is also noted
that because the rotational compliance of the support is included,
the bridge configuration does not correspond to a combination of
four cantilever beams each of one-quarter the bridge length.

Numerical results are shown in Fig. 5, also for a Poisson’s ratio
of 0.3 and for infinitely long one-sided bonds. For a classical
fixed-fixed beam, the effect of shear deformation is about 12.2%
for L /h=10. However, for L /h=10, the rotational stiffness of the
constraint has a 14.4% effect for a total correction of 26.6%. Also,
because the effect of rotation compliance varies approximately as
h /L �Eqs. �15� and �16�, with a�h�, its relative effect is more
important than classical shear deformation, which varies as �h /L�2

as L /h increases. Also shown in Fig. 5 are results of the finite
element simulation, which was performed in the same manner as
for the cantilever. Convergence required a minimum of 28,773
elements; on average, the deflection changed by about 0.5% upon
convergence. Again, there is a good agreement between the modi-
fied beam theory and the finite element analysis, which displays
somewhat greater displacements. A comparison of the end deflec-

Fig. 4 Correction factors due to shear deformation and rota-
tional compliance for a cantilever beam with an end load

Fig. 5 Correction factors due to shear deformation and rota-
tional compliance for a bridge structure with a load at its
midpoint
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tions for L /h=20, 15, 10, 5, and 3.5 gives differences between the
finite element analysis and the modified beam theory of 4.0%,
4.0%, 6.4%, 6.9%, and 11.4%, respectively.

4.3 Guided Support. In a guided support, one end of the
beam is fixed whereas the other is rigidly attached to a substrate,
which is allowed to move vertically without rotation. It is noted
that the deflection at the end of this configuration of length L is
twice that of a cantilever of length L /2. Thus, the correction terms
for this configuration are also given by Fig. 4, but with L repre-
senting one-half the length of the guided beam.

5 Structures With Residual Stress
Let 	0 be the uniform prestress acting in the axial direction

before the structure is released. After release of the structure, the
bottom surface of the film in the anchor region is constrained
against horizontal displacement, but the top surface is uncon-
strained. The result is a residual stress, the effect of which we
investigate in this section. Thus, for a tensile/compressive pre-
stress, the top surface contracts/expands whereas the bottom sur-
face is prevented from contracting or expanding, resulting in a
take-off angle �1�. Both cantilever and bridge structures are con-
sidered.

5.1 Cantilever Beam. Note that in the suspended part of the
cantilever �Fig. 2�c��, the uniform tensile/compressive prestress is
relieved by an inconsequential contraction/expansion during re-
lease. However, the residual stress in the anchor region leads to
the development of a take-off angle �1�. Similarly, a stress gradi-
ent �if it exists� is also completely relieved in the suspended sec-
tion, producing a residual curl as well as a take-off angle, as
described in Ref. �1�. In particular, a prestress gradient that varies
from tension/compression on the top of the film to compression/
tension at the bottom of the film will, upon release, produce an
upward/downward residual curl. The deflection due to that re-
sidual curl typically dominates the deflection due to the take-off
angle �1�. That curl is described in Ref. �5� and does not depend
on shear deformation. Thus, in this work, we only consider the
take-off angles due to the uniform part of the prestress.

Now, consider the anchor region of the film that is bonded to
the substrate �Fig. 2�c��. It is noted that in the classical beam
theory, shear deformation is neglected and, consequently, the ro-
tation of a cross section always remains perpendicular to the cen-
troidal axis. Hence, the classical beam theory treats the bonded
region as a fixed support, and there is a zero slope and a zero
rotation angle at the ends of the anchor region and at the begin-
ning of the suspended section. Again, it can be shown that the
inclusion of shear deformation alone will not overcome this defi-
ciency. Thus, in the following analysis, we continue to include
both shear and extensional deformations in the anchor region.

The conditions that at the bonded interface, the displacements
due to the prestresses are unaffected by the release process are

w = 0, u −
h

2
� =

	0

E
x + C0 �17�

where C0=0 is arbitrary. In Eq. �17�, the displacements are mea-
sured from the unstressed configuration. By combining Eqs. �4�,
�5�, and �17�, the rotation angle can still be expressed by Eqs. �7�
and �8�. Similarly, Eqs. �10� and �11� are replaced by

�M�x=0,−a = EI
d�

dx



x=0,−a

= − F0
h

2
, �T�x=0,−a = EA
du

dx



x=0,−a

= F0

�18�

Here, there exist concentrated reaction forces �F0� exerted by the
substrate on the bonded part of the film at both ends of the bond.
Solving Eqs. �8� and �17�, subject to conditions �18� results in a
take-off angle �0 given by

�0 = � − ��x=0 =
3	0

2E�
tanh��a

2h
� �19�

which for a long anchor region �a�h� becomes

�0 =
3	0

2E�
�20�

Note that for a Poisson’s ratio of �=0.3 and a rectangular cross
section �2=0.850 �3�, Eq. �20� gives �0=1.515�	0 /E�.

The result obtained by Fang and Wickert �1� by a curve fit to
their plane strain finite element solution for a uniform prestress is

�0 �
	0

E
�1.33 + 0.45���− 0.014h + 1.022� �21�

which is valid provided a�h, in the range 0.1
�
0.4, for 0.5

h
3.0 �m. A comparison of the results for �0 obtained using
finite elements �1� and beam theory has been made in which E in
Eq. �20� is replaced by the plane strain modulus E / �1−�2� in
order to make the comparison valid. The average absolute value of
the differences between the results of the modified beam theory
and the finite element analysis in the above range of h and � is
1.95% for �0. The maximum absolute value of the difference is
6.01%.

5.2 Bridge Structure Deflection. Consider now a bridge
structure that, prior to release, has a uniform normal stress. After
release from the substrate, the constraints do not allow these pre-
stresses to be completely relieved in either the anchors or in the
suspended region. The classical beam theory predicts that the
bridge will remain straight if the compressive force is less that the
buckling load �4�2EI /L2� for this configuration. Referring to Fig.
6, it is necessary to use our modified beam theory in the anchor
regions. However, the suspended regions act as simple beams with
end constraints and can be modeled using the ordinary classical
beam theory with bending and extensional stiffness, but without
extensional or shear deformations. Note that the upward deflection
portrayed in Fig. 6 corresponds to a tensile prestress, whereas a
downward deflection would occur for a compressive prestress.

In the suspended region, the differential equation becomes

Fig. 6 Deformation of different regions of a bridge structure
due to prestress
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EI
d2w

dx2 − Tw = − M0 �22�

where M0 is the bending moments acting at each end, and by
symmetry the shear force at each end is zero. The solution of Eq.
�22� is

w�x� = C1 sinh x + C2 cosh x −
M0

T
,  =	 T

EI
�23�

By applying the boundary conditions that the displacement van-
ishes at each end �Fig. 1�c��, a relation between the applied mo-
ment and the end slope is obtained, i.e.,

�0 = 
dw

dx



x=�L/2�−
=

M0

T
tanh

L

2
�24�

The tension in the suspended section is changed due to its trans-
verse deflection �which induces centroidal axis strains� and due to
the rotation angles at its ends, i.e.,

T = 	0A +
EA�

L
−

EAh

L

dw

dx



x=L/2
�25�

The change in length ��� of the centroidal axis of the suspended
section due to its transverse displacement can be found from

� =
1

2�
−L/2

L/2 �dw

dx
�2

dx =
M0

2

4T
�sinh L − L�/cosh2�L/2�

�26�

Because the rotational stiffness of the suspended section is much
greater than that of the anchor region, the suspended section de-
forms due to the rotation angle �0 given by Eqs. �19� and �20�.

Combining Eqs. �11�, �12�, �19�, �25�, and �26� results in the
following nonlinear equation:

� h

L
�2 �L�2

12
=

	0

E
+ � h

L
� 3	0

2�E
+ � 3	0

4�E
�2 sinh L − L

L sinh2�L/2�
�27�

which can be solved for  using standard methods. After deter-
mining  from Eq. �27�, the midpoint deflection can be found
from

w�0�
h

= � 3	0

2�E
� cosh�L/2� − 1

�h/L�L tanh�L/2�
�28�

It is noted that the above analysis presupposes a tensile pre-
stress. However, for compression, T is negative and  is purely
imaginary. The same analysis can be used with

 = ī, cosh L = cos ̄L, sinh L = i sin ̄L �29�

where i=	−1 is the imaginary number. Hence, ̄=	−T /EI is real,
and Eqs. �27� and �28� become

− � h

L
�2 �̄L�2

12
=

	0

E
+ � h

L
� 3	0

2�E
+ � 3	0

4�E
�2 ̄L − sin ̄L

̄L sin2�̄L/2�
�30�

and

w

h
= � 3	0

2�E
� 1 − cos�̄L/2�

�h/L�̄L tan�̄L/2�
�31�

respectively.
Results are shown in Figs. 7 and 8 for midpoint deflection

versus prestress for different values of L /h. Figure 7 is for a
compressive prestress, which also includes the buckling values in
dashed vertical lines. In all cases, the midpoint deflects consider-
ably before the fixed-fixed Euler buckling load is reached. In that

sense, the one-sided constraint acts in a similar way as a geomet-
ric imperfection �6�. However, even when the prestress is tensile,
the midpoint deflects �Fig. 8� although, as expected, not as much
as it does for a compressive prestress. For both tensile and com-
pressive prestresses, the longer beams deflect more than the
shorter ones.

6 Conclusions
In many applications, particularly in MEMS and in nanome-

chanics, a constraint exists only on one side of a cantilever or
bridge structure. In such cases, it is shown here that the proper
model for the beam accounts for bending, shear, and extensional
deformations in the bonded region, resulting in a finite rotational
compliance. Examples are given for cantilever, bridge, and guided
structures. For transverse loading, the correction, due to this effect
of rotational compliance, is often greater than the correction due
to the shear deformation of the freestanding portion. For bridge
structures, both tensile and compressive prestresses lead to trans-
verse deflections, with the deflections becoming large at the fixed-
fixed Euler buckling load. The results for transverse loading as
well as for prestress agree well with finite element modeling.
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A Micromechanics-Based
Elastoplastic Model for
Amorphous Composites With
Nanoparticle Interactions
A constitutive model is proposed to investigate the strengthening mechanism and the
relationship between nanostructures and effective mechanical properties of the
aluminum-based amorphous nanocomposites. A continuum micromechanics-based, three-
phase composite model comprises of Al particles, rare-earth enriched interlayers, and the
amorphous aluminum matrix. The local stress field and deformation are formulated based
on the concept of eigenstrain and equivalent inclusion method with consideration of both
the particle-interlayer-matrix interaction and the particle-particle interaction. An
ensemble-volume averaging technique is conducted to obtain the overall elastoplastic
constitutive behavior for amorphous nanocomposites with randomly distributed spherical
nanoparticles. Explicit expressions of the effective elastic stiffness and yield function in
terms of the constituent properties and nanostructures are obtained. The effective elas-
toplastic stress-strain curves for uniaxial loading and the initial yield surfaces for axi-
symmetric loading are calculated. Simulations are conducted to investigate the effects of
the particle size and pairwise particle interaction on the effective mechanical properties.
�DOI: 10.1115/1.2839899�

Keywords: nanocomposites, micromechanical modeling, plastic deformation, mean field
analysis, particle size effect

1 Introduction

Aluminum-based amorphous nanocomposites are attracting
more interest because of their remarkable mechanical strength and
reasonable ductility �1�. It has been reported that the yield strength
of amorphous aluminum alloys is as high as 800 MPa in the amor-
phous state, and can be increased to 1.5 GPa by nanoparticle
strengthening via partial crystallization �2–4�. The typical compo-
sition of Al-based amorphous nanocomposites is Al-TM-RE,
where TM is a transition metal �TM� such as Ni, Fe, Co, Cr, and
RE is a rare-earth �RE� element such as Y, La, Ce, Nd �5�. The
partial crystallization process produces nanometer-scale �-Al fcc
particles dispersed in the amorphous aluminum matrix. The nano-
particle size and interparticle distance are in the ranges of
5–50 nm and 7–100 nm, respectively �1,6�. The total particle
volume fraction is preferably in the range of 10–30% to preserve
ductility. Experiments showed that a higher annealing temperature
and longer annealing time resulted in larger crystallized particle
size and total particle volume fraction �7�. High-resolution elec-
tron microscopy examinations revealed that �-Al fcc nanopar-
ticles exhibit a nearly spherical or an ellipsoidal morphology with
no internal defects observed inside the nanoparticles �1�. Zhong et
al. �5� and Hono et al. �6� observed that the RE components
amassed around the Al nanoparticles to form an interlayer during
the partial crystallization process due to the slow diffusivity of RE
atoms. During the crystallization process, both TM and RE atoms
are rejected from the �-Al phase. The atomic radius of the RE is
usually much larger than the other solution elements, which may
then result in a RE diffusivity that is slower than that of either Al

or TM by orders of magnitude. Hence, during the growth of �-Al
nanoparticles, the rejected RE atoms are enriched at the interface
and form a heterogeneous interlayer.

Many experimental results have demonstrated a remarkable in-
crease in mechanical properties of Al-based amorphous nanocom-
posites. Inoue �1� measured the hardness and Young’s modulus of
Al88Ni9Ce2Fe1 nanocomposites. The results showed that Young’s
modulus and hardness increased monotonously proportional to the
particle volume fraction, achieving values of about 73 GPa and
420 HV, respectively, at the volume fraction of 30%. Choi et al.
�8� conducted experiments on Al88Ni10Nd2 nanocomposites where
the results exhibited an almost linear increase in micro-Vickers
hardness from 220 for amorphous single phase alloys to 400 for
amorphous nanocomposites with particle volume fraction of 32%.
Gogebakan �9� also tested Al85Y10Ni5 amorphous nanocompos-
ites, resulting in a dramatic increase in the composite hardness.

Although the extraordinarily high strength of nanocomposites
has been experimentally observed and qualitatively explained by
the existence of nanoparticles and nanostructures, the underlying
strengthening mechanisms remain to be quantitatively revealed.
Kim et al. �10� proposed a phenomenological composite model
that applied the mixture rule based on the volume fraction of each
constituent to estimate the hardness of Al–Ni–Y nanocomposites.
Kim and Hong �11� further extend their mixture rule model to a
three-phase composite model comprising of Al particles, a RE
enriched interlayer, and an amorphous aluminum matrix. While
these models provide a straightforward means to estimate the me-
chanical properties of the nanocomposites, no detailed local stress
field and plastic deformation were considered and the local
matrix-particle interaction was neglected. Recently, a multiscale
approach was proposed to model the overall elastoplastic behavior
of amorphous nanocomposites �12�, in which a three-phase nano-
structure was considered and both the particle-matrix interaction
and the particle-interlayer interaction were formulated based on
Eshelby’s eigenstrain method �13,14�.
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With the increase of the particle volume fraction, the average
distance between particles decreases. Therefore, the particle-
particle interaction will have a significant effect on the overall
mechanical properties of the nanocomposites with large volume
fraction. The current study aims at addressing particularly the
particle-particle interaction in addition to the particle-matrix and
particle-interlayer interactions. The proposed framework is ca-
pable of simulating the mechanical response of nanocomposites
with large particle volume fraction. The three distinguishing
phases are modeled as the defect-free �-Al fcc nanoparticles of
spherical shape with a radius of 5–50 nm, the amorphous alumi-
num matrix, and the RE enriched interlayer surrounding the nano-
particles. The overall mechanical properties of amorphous nano-
composites in terms of elastic stiffness and yield strength are
derived via a homogenization averaging process.

2 Equivalent Inclusion Method
To characterize the interaction between particles, we will con-

sider two spherical particles embedded in the infinite amorphous
matrix domain R, as shown in Fig. 1. Each particle domain � is
surrounded by a RE enriched interlayer domain �. The interlayer
is perfectly bonded to both the particle and the matrix with no
interfacial failure considered in the model. Furthermore, let �
=�+� denote the generalized inclusion domain that contains both
the particle and its corresponding interlayer.

2.1 Local Stress Field and Volume Averaging. When sub-
ject to a far-field external loading �0, the heterogeneous local
stress field can be expressed as

��x� = �C0:��0 + ���x�� x � R

C�:��0 + ���x�� x � �i

C�:��0 + ���x�� x � �i
� �1�

where the subscript i=1,2 representing that the particle or the
interlayer is belonging to the two inclusion domains, respectively.

The double dot symbol “:” indicates tensor contractions between a
fourth-rank tensor and a second-rank tensor. Furthermore, �0 is
the far-field strain corresponding to the far-field stress �0 with
�0=C0 :�0, C0 is the elastic stiffness tensor of the amorphous
matrix, ���x� represents the disturbance strain due to the hetero-
geneities, and C� and C� denote the elastic stiffness tensors of Al
nanoparticles and the RE enriched interlayer, respectively. For iso-
tropic materials, these fourth-rank elastic stiffness tensors can be
expressed as

Cijkl
� = ���ij�kl + ����ik� jl + �il� jk� � = 0,�,� �2�

where �� and �� are Lame’s constants for the corresponding
phases.

Eshelby �13� and Mura �14� proposed the concept of eigenstrain
�stress-free strain� and the equivalent inclusion method, in which a
homogeneous material with equivalent eigenstrains in correspond-
ing domains is used as a substitute for the heterogeneous material.
For the problem described in Eq. �1�, eigenstrain �*�x� is assumed
to be inside the domains �i and �i, and the local stress field can
be rewritten as

��x� = �C0:��0 + ���x�� x � R

C�:��0 + ���x�� = C0:��0 + ���x� − �*�x�� x � �i

C�:��0 + ���x�� = C0:��0 + ���x� − �*�x�� x � �i
�
�3�

Rearranging the terms in the last two equations, we have

�0 + ���x� + A�:�*�x� = 0 x � �i

�4�
�0 + ���x� + A�:�*�x� = 0 x � �i

where A� and A� are the mismatch material property tensors for
domains � and �, which can be expressed as

A� = �C� − C0�−1 · C0

�5�
A� = �C� − C0�−1 · C0

respectively. The single dot symbol “·” indicates tensor contrac-
tions between two fourth-rank tensors. Generally speaking, eigen-
strain is a function of the material properties of the constituents,
nanostructures, domain shape, and far-field loading conditions.
Eshelby showed that, for spheroidal particles, the eigenstrain is
constant and can be expressed explicitly �13�. However, for the
current problem, the eigenstrain is not constant due to the influ-
ence of the existing interlayer and particle interaction. Since we
are interested in the overall properties instead of the local solu-
tions, a volume averaging is conducted for Eq. �4�, namely,

1

�i
�

�i

��0 + ���x� + A�:�*�x��dx = 0 x � �i

�6�
1

�i
�

�i

��0 + ���x� + A�:�*�x��dx = 0 x � �i

Since the two inclusions are embedded in an infinite domain and
there is no difference between these two inclusion domains, there-
fore, we have

1

�1
�

�1

���x�dx =
1

�2
�

�2

���x�dx = �̄��

�7�
1

�1
�

�1

���x�dx =
1

�2
�

�2

���x�dx = �̄��

and

Fig. 1 „a… Schematic representation of the nanostructure of
Al-based amorphous nanocomposites with pairwise particle in-
teraction; „b… sketch of a spherical Al nanoparticle domain �
and RE element enriched interlayer domain � embedded in the
amorphous matrix domain R
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1

�1
�

�1

�*�x�dx =
1

�2
�

�2

�*�x�dx = �̄
�
*

�8�
1

�1
�

�1

�*�x�dx =
1

�2
�

�2

�*�x�dx = �̄
�
*

Here, we use �̄
�
* and �̄

�
* to represent the volume-averaged eigen-

strains in domains � and �, respectively. �̄�� and �̄�� denote the
volume-averaged disturbance strains in domains � and �, respec-
tively. Thus, Eq. �6� becomes

�0 + �̄�� + A�:�̄
�
* = 0

�9�
�0 + �̄�� + A�:�̄

�
* = 0

2.2 Averaged Disturbance Strains and Eigenstrains. In
general form, the disturbance strain ���x� due to an eigenstrain �̄*

in a domain V can be calculated as

���x� =�
V

��x − x��:�̄*dx� �10�

Here, ��x−x� � denotes the Green function that represents the
disturbance strain at spot x due to a unit eigenstrain at x�, which
can be expressed explicitly for an infinite domain �14�. Further-
more, the volume-averaged disturbance strain over a domain W
can be expressed as

�̄W� =
1

W�
W
�

V

��x − x��:�̄*dx�dx �11�

In the current problem, the volume-averaged disturbance strain in
Domain �1 �denoted by �̄�1

� � is due to the eigenstrains in both
inclusion domains �domains 1 and 2, including the particle and
interlayer� and therefore can be decomposed into two parts:

�̄�1
� = ��̄�1

� �1 + ��̄�1
� �2 �12�

The inclusion domain 1 contains two subdomains: the particle
domain �1 and the interlayer domain �1 with eigenstrains �̄

�
* and

�̄
�
*, respectively. From Eq. �11�, ��̄�1

� �1 can be calculated as

��̄�1
� �1 =

1

�1
�

�1

��
�1

��x − x��:�̄
�
* dx�

+�
�1

��x − x��:�̄
�
*dx�	dx

= � 1

�1
�

�1

�
�1

��x − x��dx�dx	:�̄
�
*

+
 1

�1
�

�1

��
�1

��x − x��dx�

−�
�1

��x − x��dx�	dx�:�̄
�
*

= S�1:�̄
�
* + �S�1 − S�1�:�̄

�
* �13�

In the above equations, S�1 and S�1 are the Eshelby tensors for
domains �1 and �1, respectively. Because both � and � are
spherical domain and the Eshelby tensors are related only to the
domain shape, we have

S�1 = S�1 = S �14�

where S is the Eshelby tensor and can be expressed explicitly for
spherical domains as

Sijkl =
1

15�1 − 	0�
��5	0 − 1��ij�kl + �4 − 5	0���ik� jl + �il� jk�� �15�

with v0 Poisson’s ratio of the matrix and �ij the Kronecker delta.
Thus, Eq. �13� can be simplified as

��̄�1
� �1 = S:�̄

�
* �16�

It is noticed from Eq. �16� that the eigenstrain in the interlayer
domain has no effect on the disturbance strain in the particle do-
main because of the symmetry of the spherical domain shape.

Similarly, the disturbance strain in particle domain �1 due to
the eigenstrain in the inclusion domain 2 can be written as

��̄�1
� �2 =

1

�1
�

�1

�
�2

��x − x��:�̄
�
* dx�dx

+
1

�1
�

�1

�
�2

��x − x��:�̄
�
*dx�dx

= � 1

�1
�

�1

�
�2

��x − x��dx�dx	:�̄
�
*

+
 1

�1
�

�1

��
�2

��x − x��dx�

−�
�2

��x − x��dx�	dx�:�̄
�
*

= T��1,�2�:�̄
�
* + �T��1,�2� − T��1,�2��:�̄

�
* �17�

Here, the interaction integral is defined as T�V ,W�
= �1 /V��V�W��x−x� �dx�dx and the explicit form can be ob-
tained for spherical domains �15�. Due to the symmetry, the
volume-averaged disturbance strain in domains �1 and �2 are
identical and can be expressed as �Eqs. �12�, �16�, and �17��

�̄�� = �S + T��,���:�̄
�
* + �T��,�� − T��,���:�̄

�
* �18�

Here, we drop the subscript 1 or 2 for the domain symbols since
the interaction integral T�V ,W� is only related to the domain
shape, size, and the distance between these two domains. It should
be mentioned that the domains V and W are two separated do-
mains without any common part.

The volume-averaged disturbance strain in domain �1 can be
similarly derived as

�̄�1
� = ��̄�1

� �1 + ��̄�1
� �2 �19�

with

��̄�1
� �1 =

1

�1
�

�1

�
�1

��x − x��:�̄
�
* dx�dx

+
1

�1
�

�1

�
�1

��x − x��:�̄
�
*dx�dx

= � 1

�1
�

�1

�
�1

��x� − x�dxdx�	:�̄
�
*

+ � 1

�1
�

�1

�
�1

��x� − x�dxdx�	:�̄
�
*

= S�1:f�̄
�
* + S�1:�1 − f��̄

�
* = S:�f�̄

�
* + �1 − f��̄

�
*� �20�

and
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��̄�1
� �2 =

1

�1
�

�1

�
�2

��x − x��:�̄
�
* dx�dx

+
1

�1
�

�1

�
�2

��x − x��:�̄
�
*dx�dx

= � 1

�1
�

�1

�
�2

��x − x��dx�dx	:�̄
�
*

+
 1

�1
�

�1

��
�2

��x − x��dx�

−�
�2

��x − x��dx�	dx�:�̄
�
*

= T��1,�2�:�̄
�
* + �T��1,�2� − T��1,�2��:�̄

�
* �21�

Again, we drop the subscripts for the domain symbols and the
volume-averaged disturbance strain in domain � can be obtained
from Eqs. �19�–�21� as

�̄�� = �fS + T��,���:�̄
�
* + ��1 − f�S + T��,�� − T��,���:�̄

�
*

�22�

In the above equations, the relationship ��x−x� �=��x�−x� has
been used. The volume ratio of double inclusion is defined as f
=� /�.

From the mixture rule, namely,

�̄�� = f�̄�� + �1 − f��̄�� �23�

the volume-averaged disturbance strain in domain � can be cal-
culated as

�̄�� =
1

1 − f
�̄�� −

f

1 − f
�̄�� =

1

1 − f
�T��,�� − fT��,���:�̄

�
*

+
1

1 − f
��1 − f�S + T��,�� + fT��,�� − 2T��,���:�̄

�
*

�24�

Combining Eqs. �18� and �24�, we have

�̄�� = E:�̄
�
* + F:�̄

�
*

�25�
�̄�� = G:�̄

�
* + H:�̄

�
*

with

E = S + T��,��

F =
1

f
T��,�� − T��,��

�26�

G =
1

1 − f
�T��,�� − fT��,���

H =
1

1 − f
��1 − f�S + T��,�� + fT��,�� − 2T��,���

Here, the relationship T�� ,��= �1 / f�T�� ,�� has been used. With
the substitution of Eq. �25� into Eq. �9�, the eigenstrains can be
expressed as

�̄
�
* = ��E + A�� · �H + A�� − G · F�−1 · �F − �H + A���:�0

�27�
�̄

�
* = ��E + A�� · �H + A�� − G · F�−1 · �G − �E + A���:�0

The equivalent eigenstrain for the whole inclusion domain �par-
ticle and interlayer� can be therefore obtained as

�̄
�
* = f�̄

�
* + �1 − f��̄

�
*

= − ��E + A�� · �H + A�� − G · F�−1 · �f�H − F + A��

+ �1 − f��E − G + A���:�0 �28�

2.3 Discussion. When the second inclusion does not exist,
T�� ,��=T�� ,��=0. The coefficients in Eq. �26� become

E = S, F = 0, G = 0, H = S �29�
and Eqs. �27� and �28� become

�̄
�
* = − �S + A��−1:�0

�30�
�̄

�
* = − �S + A��−1:�0

and

�̄
�
*0

= − �f�S + A��−1 + �1 − f��S + A��−1�:�0 �31�

Here, we use �̄
�
*0

to represent the equivalent eigenstrain for the
double inclusion without considering particle interaction �16�.

If the interlayer thickness is small compared with the distance
between inclusions, we have T�� ,��=T�� ,��=T�� ,�� and Eq.
�26� reduces to

�̄
�
* = − �S + T��,�� + A��−1:�0

�32�
�̄

�
* = − �S − T��,�� + A��−1:�0

and correspondingly, Eq. �28� becomes

�̄
�
* = − f�S + T��,�� + A��−1 + �1 − f��S − T��,�� + A��−1�:�0

�33�

3 Constitutive Modeling
To obtain the effective material properties, we consider a rep-

resentative volume element �RVE�, in which spherical Al nano-
particles surrounded by RE enriched interlayer are randomly dis-
persed in amorphous Al matrix. The interlayer thickness is
assumed to be small compared with the average distance between
particles to simplify the derivation.

3.1 Pairwise Interaction. For an inclusion located at x1, the
interaction effect of an inclusion located at x2 on the equivalent
eigenstrain can be expressed as �17–20�

d̄
�
*�x1 − x2� = �̄

�
* − �̄

�
*0 �34�

where �̄
�
* is the equivalent eigenstrain considering particle-

particle interaction, which is given by Eq. �28�, and �̄
�
*0

is the
equivalent eigenstrain of double inclusion �Eq. �31��. Therefore,
the interaction effect of all the other inclusions can be calculated

by integrating d̄
�
*�x1−x2� over all possible positions �x2� of the

second inclusions within the RVE. The ensemble-average process
can be expressed as �17�

�d̄
�
*��x1� =�

V−�1

d̄
�
*�x1 − x2�P�x2�x1�dx2 �35�

where P�x2 �x1� is the conditional probability function for finding
the second inclusion centered at x2 given the first inclusion cen-
tered at x1. In addition, angular brackets denote the ensemble-
averaging operator and V is the integration domain determined by
the inclusion shape. Therefore, the ensemble-averaged equivalent
eigenstrain can be expressed as

��̄
�
*� = �̄

�
*0

+ �d̄
�
*� �36�

Since nanoparticles are uniformly distributed in the amorphous
matrix, P�x2 �x1� can be simplified as N /V, where N is the total
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number of nanoparticles uniformly dispersed in entire volume V.
By expending the expression of T�� ,�� to the order of O�
3�,
where 
 is the ratio of particle radius over center-to-center dis-
tance between two inclusions, and following a similar derivation
process given by Ju and Chen �17�, the ensemble-averaged
equivalent eigenstrain is obtained as

��̄
�
*� = − Q:�0 �37�

with

Q = f��� · �S + A��−1� + �1 − f���� · �S + A��−1� �38�

and the fourth-rank interaction tensor ����=� ,�� has the isotro-
pic form of

�ijkl
� = �1

��ij�kl + �2
���ik� jl + �il� jk� �39�

in which

�1
� =

5��

96�
2
12	0�13 − 14	0� −

96��

3�� + 2�

�1 − 2	0��1 + 	0��
�2

� =
1

2
+

5��

96�
2
6�25 − 34	0 + 22	0

2� −
36��

3�� + 2�

��1 − 2	0��1 + 	0�� �40�

and

�� = 2�5	0 − 1� + 10�1 − 	0�� �0

�� − �0
−

�0

�� − �0
�

�41�

� = 2�4 − 5	0� + 15�1 − 	0�
�0

�� − �0

In the above equations, �� and �� are the bulk modulus and shear
modulus of phase �, respectively. �� is the total volume fraction
of the inclusion domain �including the particle and its correspond-
ing interlayer�. It is noted that the expression of ensemble-
averaged eigenstrain ��̄

�
*� is a constant �position independent�;

thus, it will keep unchanged for an additional volume-averaging
process. To simplify the symbols, we will drop the angular brack-
ets and use the head bar to represent the ensemble-volume aver-
aged variables.

3.2 Effective Elastic Stiffness Tensor. Based on small-
deformation elastoplasticity principle, the total macroscopic �ef-
fective� strain tensor �̄ consists of elastic part �̄e and plastic part
�̄p. The effective elastic strain �̄e is related to the effective stress

�̄ via �̄= C̄ : �̄e where the effective elastic tensor C̄ of nanocom-
posites can be derived with the help of general governing equa-
tions of composite materials �21�. Specifically, for nanocompos-
ites containing randomly distributed spherical particles with
interlayers, the three governing equations can be obtained as �12�

�̄ = C0:��̄ − ���̄
�
*�

�̄ = �0 + ��S:�̄
�
* �42�

�̄
�
* = Q:�0

Therefore, the explicit expression of the effective elastic tensor C̄
of the nanocomposites can be shown as

C̄ = C0 · �I + ��Q · ���S · Q − I�−1� �43�

3.3 Effective Yield Function and Hardening Rule. The
overall plastic behavior of Al-based amorphous nanocomposites is
attributed to the plastic deformation in the amorphous matrix
since it is observed that the �-Al fcc nanoparticles contain no
dislocations or other imperfections �10� and thus are assumed to

deform elastically. Accordingly, at any matrix material point x, the
disturbance strain ���x� due to the existence of an inclusion cen-
tered at x� is given by Eq. �10� and the corresponding local stress
can be calculated as

��x� = �0 + C0:�Ḡ�x − x��:�̄*� �44�

in which Ḡ�x−x� �=����x−��d� , �x���, and � is the spherical

inclusion domain centered at x�. Here, Ḡ�x−x� � is called
exterior-point Eshelby’s tensor and its explicit expression for
spherical inclusion domain is obtained as �21�

Ḡijkl�x� =

3

30�1 − 	0�
� ��3
2 + 10	0 − 5��ij�kl

+ 15�1 − 
2��ijnknl + �3
2 − 10	0 + 5���ik� jl + �il� jk�

+ 15�1 − 2	0 − 
2��klninj + 15�7
2 − 5�ninjnknl

+ 15�	0 − 
2���iknjnl + �ilnjnk + � jkninl + � jlnink�� �45�

In this equation, 
=a /r, in which a is the radius of the sphere
domain �, r=�xixi, and ni=xi /r. Local yielding and plastic flow
are dependent on local stress field. For simplicity, the commonly
used von Mises yield criterion with an isotropic hardening law is
assumed for the matrix material as an illustration. Namely, the
local yield function reads

F��,ep� = ��:Id:� − K�ep� � 0 �46�

where ep and K�ep� are the equivalent plastic strain and the iso-
tropic hardening function of the matrix-only material, respec-
tively. Moreover, Id denotes the deviatoric part of the fourth-rank
identity tensor I. It is noted that, during plastic deformation, we
employ the secant-moduli method �18� to update the elastic tensor
of the matrix during the calculation process of local stress tensor.
It is also noted that extension of the present framework to more
general yield criterion and general hardening law can be derived
with addition effort.

Following Ju and Sun �22�, we denote by H�x �g�
=��x �g� :Id :��x �g� the square of the “current stress norm” at a
local point x for a given inclusion configuration �assembly� g.
Furthermore, �H�m�x� is defined as the ensemble average of
H�x �g� over all possible realizations for a matrix point x, which
indicates

�H�m�x� = H0 +�
g

�H�x�g� − H0�P�g�dg �47�

where P�g� is the probability density function for determining an
inclusion for a given configuration g, and H0=�0 :Id :�0 is the
square of the far-field stress norm applied on the composite. Since
nanoparticles are uniformly distributed in the amorphous matrix,
P�g� can be simplified as N /V, where N is the total number of
nanoparticles uniformly dispersed in entire volume V. After a se-
ries of lengthy but straightforward derivations, the ensemble-
averaged �H�m�x� can be evaluated as

�H�m�x� = �0:T:�0 �48�

where the components of the fourth-rank isotropic tensor T take
the form

Tijkl = T1�ij�kl + T2��ik� jl + �il� jk� �49�

with

T2 =
1

2
+

��

36
�23 − 50	0 + 35	0

2���1�2

�50�
3T1 + 2T2 = 50���1 − 2	0�2�3�1 + 2�2�2

and

Journal of Applied Mechanics MAY 2008, Vol. 75 / 031009-5

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�2 = �
�=�,�

f�

�

6 +

5��

8���2�6�25 − 34	0 + 22	0
2�

−
36��

3�� + 2�

�1 − 2	0��1 + 	0�	�
�51�

3�1 + 2�2 = �
�=�,�

f�

3�� + 2�

2 +

25�

4���2��5 + 	0 − 4	0
2�

−
6��

3�� + 2�

�1 − 2	0��1 + 	0�	�
Here, f�= f is the volume ratio of the particle and f�=1− f is the
volume ratio of the interlayer. Alternatively, Eq. �48� can be re-
written in terms of the macroscopic �ensemble-volume averaged�
stress �̄ as

�H�m�x� = �̄:T̄:�̄ �52�

with T̄=P · T̄ ·P and the fourth-rank tensor P reads

P = �I + ���S − I� · Q� �53�

It is observed from Eq. �53� that �H�m can be reduced to the form
derived by Liu and Sun �12� for the nanocomposites if no pairwise
particle interaction is considered.

The ensemble-volume averaged yield function F̄ of the nano-
composites can be characterized directly from Eq. �46�:

F̄ = �1 − �����H�m − K�ēp� � 0 �54�

It is noted that, for isotropic plastic hardening, K�ēp� can be sim-
plified as

K�ēp� =�2

3
��y + h�ēp�q� �55�

where �y, h and q, and ēp denote the yield strength of the matrix,
the linear and exponential isotropic hardening parameters of the
matrix, and the effective equivalent plastic strain of the nanocom-
posites, respectively. It is noted that Eq. �54� represents the
pressure-dependent nanocomposite yield function although the

matrix is assumed to be pressure-independent von Mises type
yield criterion.

Based on the derived effective yield function, the effective plas-

tic strain rate �̇p can be calculated from the associative plastic
flow rule:

�̇̄p = �̇
�F̄

��̄
�56�

where �̇ is the plastic consistency parameter, which can be ob-
tained from the following Kuhn–Tucker condition:

�̇ � 0, F̄ � 0, �̇F̄ = 0, �̇F̄
˙

= 0 �57�
Therefore, the effective elastoplastic constitutive model of nano-
composites considering the pairwise particle interaction is devel-
oped, which is capable of estimating the overall elastoplastic
stress-strain responses of nanocomposites under general three-
dimensional loading conditions.

4 Numerical Simulation and Discussion
Specific Al–Ni–Y nanocomposites are applied as the model ma-

terial in the following simulation. All phases are assumed to be
isotropic. The amorphous Al matrix is assumed to have Young’s
modulus of 70 GPa and Poisson’s ratio of 0.3. The yield strength
of the matrix is taken as 1.29 GPa �9�, and the plastic hardening
parameters are h=1.0 GPa and q=0.3, respectively. The �-Al fcc
nanoparticles have Young’s modulus of 71 GPa and Poisson’s ra-
tio of 0.31. Since there are no mechanical data available for the
RE element enriched interlayer, it is assumed that the intermetallic
compound interlayer phase has Young’s modulus of 500 GPa and
Poisson’s ratio of 0.25. Due to the much higher strength of the
defect-free Al nanoparticles, plastic deformation is constrained in
the amorphous matrix. Unless explicitly stated otherwise, the ra-
dius of nanoparticles is assumed to be 10 nm and the thickness of
interlayers to be 3 nm.

Uniaxial loading simulation is conducted to investigate the elas-
toplastic behavior of the nanocomposites. Figure 2 shows that
overall Young’s modulus increases proportional to the inclusion
volume fraction. When the inclusion volume fraction is small �less

Fig. 2 Overall Young’s modulus of the nanocomposites versus particle vol-
ume fraction for nanocomposites with and without considering pairwise
particle interaction
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than 10%�, the ignorance of particle interaction does not result in
significant error when estimating the overall elastic stiffness. With
the increase of the inclusion volume fraction, the particle interac-
tion shows more significant effect on the overall elastic stiffness.
For a nanocomposite with 30% particle volume fraction, overall
Young’s modulus considering particle interaction is nearly 9%
higher than the one without considering particle interaction, which
shows that the neglect of particle interaction will introduce sig-
nificant error when the inclusion volume fraction is large. The
nanocomposites also demonstrate the strong strengthening effect,
as shown in Fig. 3. The nanocomposite having a 30% inclusion
volume fraction indicates a yield strength 1.6 times higher than
that of amorphous alloys. It is shown that the effect of particle
interaction on the overall yield strength is not as significant as on

overall Young’s modulus and only a 3% increase of the yield
strength is observed for considering the particle interaction. One-
dimensional strain-stress curves for uniaxial loading tests are pre-
sented in Fig. 4. Again, considering pairwise particle interaction,
higher elastic stiffness, yield strength, and hardening are observed.
For comparison, the overall elastoplastic curve for nanocompos-
ites without considering the interlayer is drawn in this figure. The
existence of high strength interlayer significantly increases both
elastic stiffness and yield strength of nanocomposites. Further-
more, with the introduction of the interlayer thickness as a char-
acteristic length scale, the particle size effect can be incorporated
in the current model. In Fig. 5, the overall stress-strain curves of
the nanocomposites for various particle sizes are presented. For a
fixed interlayer thickness, a clear particle size effect can be ob-

Fig. 3 Overall yield strength of the nanocomposites versus particle volume
fraction for nanocomposites with and without considering pairwise particle
interaction

Fig. 4 Overall uniaxial nanocomposite stress-strain curves
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served. With small particle size, higher elastic stiffness and yield
strengths are obtained, which coincide with experimental observa-
tion �23,24�. The overall yield strength of the nanocomposites is
presented for a large range of particle sizes, from nanometer scale
to micrometer scale, in Fig. 6. When the interlayer is nonexistent
�i.e., the interlayer thickness is zero�, the overall yield strength
does not change for the entire particle size range, implying that for
a fixed volume fraction, the particle size does not affect the over-
all yield strength. Alternatively, for a fixed interlayer thickness, a
clear particle size effect can be observed. When the particle size
corresponds to the same length scale as the interlayer thickness, a
significant increase of yield strength is exhibited, proving that the
existence of an interlayer significantly affects the overall mechani-
cal properties of the nanocomposites. Since the interlayer between

the particles and the matrix is usually measured in nanometers, the
nanoparticle-reinforced composites demonstrate higher yield
strength than microparticle-reinforced composites.

To investigate the strengthening effect of the nanocomposites
under complex loading condition, the nanocomposite yield surface
is certainly of interest. Axisymmetric loading cases are specified
here to study multiaxial strengthening effect. With the assumption
of overall stresses as �̄11�0, �̄22= �̄33�0, and �̄12= �̄13= �̄23=0,
the initial yield surfaces are demarcated in the volumetric and
deviatoric stress space in Fig. 7. The nanocomposite volumetric
stress �̄v and deviatoric stress �̄d can be obtained from their defi-
nitions considering the axisymmetric property as �̄v= ��̄11

+2�̄22� /3 and �̄d= �̄11− �̄22, respectively. It is shown from Fig. 7

Fig. 5 Overall uniaxial nanocomposite stress-strain curves with various
nanoparticle sizes

Fig. 6 Particle size effect on the overall yield strength of the nanocompos-
ites with different interlayer thicknesses
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that the yielding response of the nanocomposites is not of von
Mises type, even when the nanoparticles are spherical in shape
and randomly distributed. A decrease in volume fraction of nano-
particles leads to an increase of the volumetric yield stress and a
simultaneous decrease of the deviatoric yield stress. This trend
indicates that the pressure dependence of nanocomposite yielding
primarily resulted from the existence of nanoparticles. When the
volume fraction of particles vanishes, the matrix-only material
will be restored von Mises yielding, which is consistent with the
assumption of the matrix material satisfying the von Mises
J2-yield criterion.

5 Conclusions
A continuum micromechanics-based constitutive framework is

proposed to investigate the effective elastoplastic properties of
randomly dispersed nanoparticle-reinforced amorphous compos-
ites. The nanometer-scale local stress field and deformation are
formulated based on the concept of eigenstrain and equivalent
inclusion method considering both the particle-interlayer-matrix
interaction and the particle-particle interaction. Ensemble and vol-
ume average procedures are conducted in a microscopic RVE to
estimate the pairwise particle interaction and to obtain the overall
elastoplastic constitutive behavior for amorphous nanocomposites
with randomly distributed spherical nanoparticles. Explicit ex-
pressions of the effective elastic stiffness and yield function in
terms of the constituent properties and nanostructures are ob-
tained.

Under the uniaxial loading condition, the effects of particle in-
teraction on the overall elastic stiffness and yield strength of nano-
composites are numerically simulated. It is shown that the consid-
eration of pairwise particle interaction leads to a significant
increase of the effective elastic stiffness when the inclusion vol-
ume fraction is large. The interlayer thickness is treated as a char-
acteristic length scale; thus, the particle size is incorporated into
the current model. One-dimensional elastoplastic strain-stress
curves are presented for various particle sizes. It is demonstrated
that for a fix volume fraction, composites with small particle size
have much higher yield strength than that with large particle size.
Thus, the particle size effect is investigated for nanocomposites
within the continuum mechanics framework. The overall yield

surfaces are demarcated for nanocomposites under axisymmetric
loading to demonstrate the multiaxial strengthening effect and
pressure-dependent yielding response due to the existence of
nanoparticles. The proposed model satisfies the continuum me-
chanics rules and provides a feasible means to estimate the me-
chanical response of nanocomposites.
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Dynamic Response of Rapidly
Heated Cylindrical Rods:
Longitudinal and Flexural
Behavior
A very fast temperature increase, produced by a nonuniform heat generation, induces in
a simply supported, isotropic, cylindrical rod both longitudinal and flexural vibrations.
This paper presents an analytical method to study these vibrations and determine the
stresses they provoke. The proposed procedure relies on three main steps: an exact
solution for the temperature field is first obtained, by means of Fourier–Bessel expan-
sions; quasistatic thermal stresses are then computed as a function of the calculated
temperature distribution, making use of the thermoelastic displacement potential and of
the solution to the equivalent isothermal two-dimensional stress problem; finally, longi-
tudinal and flexural vibrations excited by an equivalent thermal force and thermal bend-
ing moment are determined using the mode-summation method. The influence of thermal
shock duration on the maximum value of the longitudinal dynamic stress and of the ratio
between the characteristic thermal time and structural response time on the dynamic
bending deflection is analyzed and discussed. Finally, a comparison between the analyti-
cal model and experimental measurements is presented. The analytical model described
in this paper allows the complete evaluation, within the linear elastic domain, of quasi-
static and dynamic thermal stresses induced in an isotropic cylindrical rod by rapid
internal heating. �DOI: 10.1115/1.2839901�

Keywords: thermally induced vibrations, dynamic thermal stresses, thermal shock, stress
waves

1 Introduction

Thermal stress analyses are in most cases performed neglecting
the effect of inertia force. Even if the thermal problem is time
dependent, the study is conventionally solved considering the
structural problem as a succession of quasistatic analyses. Thus,
the dynamic effect due to the mass inertia of structures is not
considered. When a heating process is very rapidly occurring,
neglecting the inertia force could lead to a wrong estimation of the
thermal stresses.

Studies of the dynamic response of rapidly heated structures,
which take into account this effect, have been carried out in sev-
eral fields of engineering and applied physics as from the 1950s,
in particular, in aerospace, nuclear engineering, and high energy
particle physics.

In the aerospace engineering field, the problem of thermally
induced vibrations was first studied by Boley �1,2� and by Boley
and Barber �3�, with specific regard to flexible and slender space-
craft booms suddenly exposed to solar radiation. Boley’s papers
analyzed the behavior of rectangular beams and plates submitted
to rapid surface heating, pointing out that a sudden, nonuniform
temperature rise produces a time dependent thermal moment that
deforms the structure. Boley proposed a relation between the char-
acteristic thermal diffusion time and the structural response time
and showed that, if the two parameters are in the same order of
magnitude and a sudden heating process occurs, transverse vibra-
tions of the beam take place; Boley’s result, which was derived for
the case of surface heating, can be adapted to the problem of

internally heated beams. Nevertheless, in this case, the structure
shows a different behavior as it will be discussed later.

In the same domain, further works were published by Muro-
zono �4� and Blandino and Thornton �5�, who studied the case of
slender cylindrical beams with uniform internal heating and non-
uniform heat transfer coefficient on the surface. These studies
confirmed that thermally induced flexural vibrations occur in a
flexible structure with low fundamental frequencies.

Concerning nuclear engineering, the main contributions came
from Burgreen �6,7� who studied the dynamic stresses induced in
rods �analysis limited to the longitudinal behavior�, thin shells,
and solid spheres �structures typical of nuclear reactors and
nuclear fuel� by rapid temperature pulses with uniform distribu-
tion; the effect of the duration of temperature pulses on dynamic
stresses was analyzed.

In the field of high energy physics, studying the dynamic re-
sponse of structures submitted to rapid internal heating is of para-
mount importance as in modern accelerators, short duration im-
pacts on structures induced by highly energetic particle beams
frequently occur �by accident or on purpose�. Studies on these
subjects were first performed by Bargmann �8� for the case of a
uniformly rapidly heated rod, on the basis of Laplace transforms
and by Sievers �9� for thin rods and disks, making use of Fourier
and Fourier–Bessel series with some particular boundary condi-
tions; both works only dealt with longitudinal vibrations.

Cited studies were performed from a mainly engineering point
of view; many authors treated the problem from a more theoretical
approach: Among the most relevant contributions are the works of
Lessen �10,11�, Chadwick and Sneddon �12�, and Chadwick �13�.

An extensive review on the subject of thermally induced waves
and vibrations was made by Bargmann �14�.

Virtually, all previous works on dynamic thermal stresses in-
duced in rods and bars investigated separately the two problems of
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thermally induced flexural vibration and of longitudinal propaga-
tion of thermoelastic stress waves. Moreover, in the aerospace
engineering field, the interest was mainly focused on surface heat-
ing problems, while in the nuclear engineering area, problems of
rapid internal heating were studied considering only the case of
uniform temperature distribution.

In the present paper, both longitudinal and flexural behaviors of
rods excited by rapid nonuniform internal heating are studied; the
contribution of quasistatic stresses as well as the one of the dy-
namic effect is considered leading to a complete evaluation of the
displacements and of the thermal stress field.

The system considered is a cylindrical rod submitted to a rapid
temperature rise induced by an internal nonuniform heat genera-
tion. The heat deposition is constant along the rod axis, and has an
axially offset Gaussian distribution over the rod cross section �Fig.
1�. Such an occurrence is common to many particle accelerator
components exposed to high energy subatomic particle beams. In
particular, this work was carried out to study beam targets: Usu-
ally, these objects are rods directly hit by a particle beam as to
create a shower of secondary particles, required for physics ex-
periments; such devices are widely employed in laboratories of
particle physics. The targets analyzed in this paper are isotropic
graphite cylinders axially hit by a proton beam: The interaction
between protons and graphite nuclei rapidly generates large
amounts of heat and triggers the emission, along with other par-
ticles, of a neutrino shower; the analysis presented has been ap-
plied at European Organization for Nuclear Research �CERN� for
the design of targets in the frame of the CNGS experiment �15�.

Though particle beams should ideally impact cylindrical targets
on their axis, in practice, because of mechanical misalignments,
the beam is eccentric with respect to the axis of the cylinder. This
induces, on top of axial vibrations, lateral oscillations, leading, in
some cases, to the collapse of the structure.

In this paper, both the longitudinal and flexural thermally in-
duced vibrations are considered; radial waves are small enough
�compared to quasistatic deformations� to be neglected, as shown
by Mura �16�.

An analytical method to calculate first the temperature distribu-
tion and then the quasistatic and dynamic thermal stresses is fully
developed on the basis of the work carried out by Bertarelli �17�,
Bertarelli and Kurtyka �18�, and Dallocchio et al. �19�.

A parametric study is also performed allowing to determine the
influence of thermal shock duration on the longitudinal dynamic
stresses and of the ratio of the diffusion time to the fundamental
flexural period on dynamic bending stress and lateral oscillations.

In the last section, a comparison between the analytical model
and experimental measurements performed with a laser vibrome-
ter, Wilfinger �20� is presented.

2 Analytical Model: Main Parameters and Basic Hy-
potheses

We consider a thin cylindrical rod of radius R and length L; the
rod is supposed simply supported and is free to expand at its
extremities. It is assumed that the deposited energy has a Gaussian
distribution over the cross section, with standard deviation � and
eccentricity � with respect to the axis of the cylinder �Fig. 1�; in

spite of this assumption, the method is valid for any energy dis-
tribution provided it is longitudinally constant and writable as a
Fourier-series expansion. An isotropic material with linear elastic
behavior, without damping, was assumed. Thermal and mechani-
cal properties were considered independent of temperature.

Heating processes due to particle beam impacts are extremely
fast: The thermal shock typically lasts from a few nanoseconds to
some microseconds. During this time �, the deposited energy can
be considered as linearly growing. As shown by Kalbreier et al.
�21�, it is possible to assume that no heat diffusion occurs during
the thermal shock because the characteristic thermal diffusion
time td is much longer than the thermal shock duration �; hence,
the rod, hit by the particle beam, sees a rapid temperature rise
proportional to the deposited energy.

On the same ground, the system can be considered adiabatic
during a typical time of several milliseconds �no heat exchange
through the outer surface of the cylinder is taken into account; so,
the total deposited energy remains constant�.

The evaluation of thermal stresses is based on the linear theory
of thermoelasticity; as stated above, the rapidity of the heat depo-
sition invalidates the usual assumption that the effects of inertia
may be disregarded: In fact, it will be shown that inertia plays a
major role in the buildup of longitudinal and flexural stresses.
However, in spite of the rapidity of the phenomenon, it can be
demonstrated that the effects of radial inertia on longitudinal
waves can be neglected if the frequency of the system is small
compared to a certain reference value �22�: This is true for our
case, as it will be proved later.

In its general expression, the linear theory of thermoelasticity
states that a full coupling exists between thermal and structural
effects; this means that temperature variation influences the strain
field but also that the rate of dilatational strain generates heat
affecting the temperature field. As shown by Boley and Weiner
�23�, this coupling can be neglected if the time rate of change of
the axial strain is of the same order of magnitude of that of tem-
perature: It will be seen that this is true, at least for the initial
phase of the thermomechanical response, which is the one of
highest interest for this analysis.

On this ground, it is possible to consider this as a weakly
coupled thermoelastic problem, i.e., the elastic strains are influ-
enced by the temperature distribution but not the inverse.

3 Thermal Analysis

3.1 Introduction. For the class of problems of interest, the
temperature distribution can be supposed constant along the rod
axis, thus reducing the analysis to a two-dimensional study. At the
end of the thermal shock, when heat is no longer generated inside
the cylinder, the following diffusion equation applies:

�2T�r,�,t�
�r2 +

1

r

�T�r,�,t�
�r

+
1

r2

�2T�r,�,t�
��2 =

1

�

�T�r,�,t�
�t

�1�

�2T�r,�,t� =
1

�

�T�r,�,t�
�t

3.2 Initial and Boundary Conditions. Given that the maxi-
mum energy density Umax is found at r=�, �=3� /2, the specific
energy takes the following expression:

U�r,�� = Umaxe
−�r2+�2+2r� sin ��/2�2

�2�
Having assumed that no heat diffusion occurs during the heating
period, the temperature at the end of the thermal shock can be
simply calculated via the following equation:

T0�r,�� =
U�r,��

cp
�3�

Since the analysis begins at t=�, expression �3� gives the initial

Fig. 1 Energy distribution on target rod due to proton beam
impact
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conditions for the heat conduction equation �1�.
Thanks to the adiabatic hypothesis, the total energy deposited

on the rod remains constant; so, it is easy to calculate the final
uniform temperature TF of the cylinder:

TF =

�
r

�
�

U�r,��drd�

cp�R2 �4�

The boundary condition, stemming from the adiabatic hypothesis,
is given by

� �T�r,�,t�
�r

�
r=R

= 0 �5�

Equation �5� states that the temperature gradient on the outer sur-
face must be zero.

Initial temperature distribution given by Eq. �3� can be replaced
by its Fourier-series expansion �n is the Fourier expansion index
and an are the usual series coefficients�

T0�r,�� = �
n=0

�

an�r�Hn��� �6�

where Hn���=cos�n�� if n is even and Hn���=sin�n�� if n is odd.

3.3 Temperature Distribution. We introduce nondimen-
sional variables for the radial coordinate r̄, time coordinate t̄ �note

that t̄=0 corresponds to t=��, and temperature T̄, as defined in the
Nomenclature. Adopting these coordinates, the diffusion equation
�1� assumes the following expression:

�2T̄�r̄,�, t̄� =
�T̄�r̄,�, t̄�

�t̄
�7�

Making use of the separation of variable method, the function

T̄�r̄ ,� , t̄� can be reduced to the following form:

T̄�r̄,�, t̄� = �
n

Fn�r̄�Gn�t̄�Hn��� �8�

where Hn is the harmonic term defined in Eq. �6�. Expression �8�
must satisfy the diffusion equation �7�. Solution of the previous
equation can be obtained by means of standard methods for partial
differential equations and can be written in the following form:

T̄�r̄,�, t̄� = �
n

�
s

Cn,sJn��n,sr̄�e−�n,s
2 t̄Hn��� �9�

where Jn is a Bessel function of the first kind of order n, Cn,s are
numerical coefficients obtained from the initial condition �3�, and
�n,s are the eigenvalues of the problem obtained from the appli-
cation of the adiabatic condition �5� �which can be evaluated using
the approximated expressions given by Abramowitz and Stegun
�24��.

The temperature distribution T̄ as a function of time t̄ for �
=0.6 is shown in Fig. 2. Results are scaled to the final uniform
temperature TF �4�, which is proportional to the total energy de-
posited on the cylinder.

Several plots are presented to describe the temperature evolu-
tion at different points of the cross section; maximum temperature

T̄�� ,3� /2,0� takes place at the center of the Gaussian distribu-
tion, where the energy deposition has its maximum value. The
heat diffusion process is virtually completed at time t̄=1, when
temperature distribution becomes practically uniform and equals

to TF �T̄�1�.

4 Quasistatic Stresses

4.1 Introduction. Once the temperature distribution is
known, it is possible to obtain the quasistatic stresses adapting a
method developed by Goodier �25�, and described in the book of
Timoshenko and Goodier �26�; this method has been applied to a
plane-strain case, assuming that no longitudinal expansion occurs.
The exact boundary condition is subsequently restored. Stress
components are calculated in two different steps: First, the
stresses derived from the application of a nondimensional dis-

placement potential 	̄�r̄ ,� , t̄� are evaluated. Goodier has shown
that, in the case of pure heat conduction, the general thermoelastic
equation �also known as the Duhamel–Neumann form of Hooke’s
law� is automatically satisfied if the nondimensional displacement

potential 	̄ is a solution of the following equation:

�	̄�r̄,�, t̄�

�t̄
=

1 + 


1 − 

T̄ �10�

Since T̄ becomes uniform when t̄→�, 	̄ can be immediately cal-
culated as

	̄�r̄,�, t̄� = −
1 + 


1 − 
�
n

�
s

Cn,sJn��n,sr̄�e−�n,s
2 t̄

�n,s
2 Hn��� + B �11�

Here, B is a generic constant of integration, not affecting the dis-
placement field.

Once 	̄ is known, nondimensional displacement components in
radial and tangential directions ū� and v̄� can be easily found by
means of the following relations:

ū� =
�	̄

�r̄
�12�

v̄� =
1

r̄

�	̄

��

Subsequently, strain and stress components, �̄r�, �̄��, �̄r�� , and �̄z�,
can be calculated from general kinematic relations for a two-
dimensional problem and Hooke’s general law �Duhamel–
Neumann� when the axial strain �z is equal to zero:

�r� =
�ū�

�r̄

��� =
ū�

r̄
+

1

r̄

�v̄�

��
�13�

Fig. 2 Temperature T̄ as a function of time t̄ with eccentricity
�̄=0.6
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r�� =
1

r̄

�ū�

��
+

�v̄�

�r̄
−

v̄�

r̄

�̄r� − 
��̄�� + �̄z�� = ��r� − T̄�

�̄�� − 
��̄r� + �̄z�� = ���� − T̄�
�14�

�̄z� − 
��̄r� + �̄��� = − T̄

�̄r�� =
r��

�1 + 
�
The stress distribution calculated from the displacement potential
satisfies the thermoelastic equation, but not the boundary condi-
tion, requiring no forces on the external surface of the cylinder.
Invoking the principle of superposition, a pressure field can be
added in order to remove nonzero stresses on the lateral rod sur-
face, thus restoring the correct boundary conditions. To do so, the

formulation of the nondimensional Airy stress function �̄�r̄ ,� , t̄�,
as derived by Mitchell �Timoshenko and Goodier �26��, is invoked
for an ordinary plane-strain problem in polar coordinates. Once

�̄�r̄ ,� , t̄� is known, nondimensional stress components �̄r̄�, �̄r�,
and �̄r̄�� can be calculated from the following expressions:

�̄r� =
1

r̄

��̄

�r̄
+

1

r̄2

�2�̄

��2

�̄�� =
�2�̄

�r̄2 �15�

�̄r�� = −
�

�r̄
	1

r̄

��̄

��



4.2 Quasistatic Stresses for Zero-Axial Strain. By super-
posing the stress components �14� and �15�, it is possible to cal-
culate the nondimensional quasistatic stresses. Previous calcula-
tions were made in the hypothesis of zero-axial strain: The
resulting axial stress �̄z0 is that of a rod whose axial deformation
is prevented. Hence, we obtain

�̄r = �̄r� + �̄r�

�̄� = �̄�� + �̄��

�16�
�̄r� = �̄r�� + �̄r��

�̄z0 = 
��̄r + �̄�� − T̄

The stresses given in �16� are nondimensional and scaled to a
reference stress equal to �ref=E�TF; this value corresponds to the
opposite of the compressive axial stress induced by a uniform
temperature TF in a rod with fixed ends.

The quasistatic stress distribution shown in Fig. 3 has a maxi-
mum at the end of the energy deposition t=�; these stresses tend
to disappear as heat diffusion progresses and temperature distri-
bution becomes uniform �apart from �z0 which tends to �ref�.

4.3 Equivalent Dynamic Loads. Axial stress in previous cal-
culations was obtained in the hypothesis of zero-axial strain. In
reality, the rod is longitudinally free at its extremities: To restore
such condition, it is necessary to impose that the axial force and
bending moment resulting from the axial stress at both ends of the

rod are zero. To do so, we calculate the resultant axial force F̄z�t̄�
and bending moment M̄x�t̄� with opposite sign �expressions �17��
and then apply these loads at the two extremities. By the de St.
Venant’s principle, at a certain distance from the ends, the actual

axial stress on the rod free to expand is obtained by superimpos-

ing to �̄z0 the stresses induced by F̄z�t̄� and M̄x�t̄�.

F̄z�t̄� = − 2�
�/2

�/2�
0

1

�̄z0�r̄,�, t̄�r̄dr̄d�

�17�

M̄x�t̄� = − 2�
−�/2

�/2 �
0

1

�̄z0�r̄,�, t̄�r̄2 sin �dr̄d�

Fz�t� = F̄z�t̄��E�TFR2�
�18�

Mx�t� = M̄x�t̄��E�TFR3�
Expressions �18� represent dimensional quantities.

5 Dynamic Stresses

5.1 Introduction. The effect of inertia is essential for the cor-
rect evaluation of a thermal shock; in fact, if the temperature
change within a body is fast enough, its thermal expansion is
initially prevented by the body mass, establishing a coupling be-
tween thermally originated elastic forces and inertia forces. In the
case of a rod, this gives birth to dynamic stresses propagating
along the rod axis as elastic stress waves: Assuming that the ther-
mal shock time � is very short, at t=�, the system is still in a
compressive state; the stress relaxation due to elastic forces starts
from the extremities of the rod; so, two stress waves appear, trav-
eling from the extremities, superimposing at the center and re-
flecting at the other ends.

The structural dynamic effects provoked by the thermal shock
can be studied as the response of the system to the variable loads
acting at the rod ends: the force Fz�t� and moment Mx�t� �18�.
These loads, applied at the extremities of the beam and superim-
posed to the quasistatic stress field, are necessary to ensure the
dynamic equilibrium.

Having assumed that no diffusion occurs during thermal shock,
the foregoing loads grow up linearly from zero to the maximum
value given by Fz��� and Mx��� at the end of the energy deposi-
tion; from this time on, Fz�t� remains constant �since it is propor-
tional to the deposited energy�, while Mx�t� decreases as the tem-
perature distribution tends to become uniform because of thermal
diffusion �Fig. 4�. To calculate the dynamic response of the sys-
tem, we have considered a piecewise linear interpolation of the
curve of equivalent thermal bending moment. As shown in Fig. 4,
the interpolation is quite coarse, but this did not notably affect the

Fig. 3 Quasistatic in-plane stresses �̄r, �̄�, �̄r� and axial stress
�̄z0 at zero-axial strain as a function of r̄ „t=�, �̄=0.6…
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accuracy of the analysis.
Figure 5 shows the qualitative model of the dynamic loads and

the corresponding unit functions g�t� and g��t� �so, Fz�t�
=Fz���g�t� and Mx�t�=Mx���g��t��.

At this stage of the analysis, we may wonder if the effects of
force and moment can be treated separately. Indeed, this is the
case, since Fz�t�, being the resultant of internal axial stresses, is
always orthogonal to the rod cross section and gives no contribu-
tion to the bending moment, even when the rod is deflected.

As a consequence, no mutual influence exists between axial
force and bending moment; so, the system can be considered lin-
ear, the axial and flexural behaviors can be studied separately, and
the superposition principle applied.

To calculate the system time response, we have used the mode-
summation method �see, e.g., Thomson� �27�, which basically ex-
pands the deformation in terms of the longitudinal and flexural
natural modes ��zi

�z̄� and � f i
�z̄�� and of the generalized coordi-

nates �qzi
�t� or qfi

�t�� of a simply supported uniform beam, loaded
at the extremities with Fz�t� or Mx�t�, respectively. Given the slen-
derness of the rod, the classical Bernoulli–Euler beam theory has
been assumed for the flexural behavior.

The equation of motion for each linearly independent mode is
obtained by the application of Lagrange’s equation, which leads to

d2qi

dt2 + �i
2qi =

Qi

mi
�19�

where mi and Qi are the generalized masses and generalized

forces for the ith mode.
The generalized force Qi is obtained from the work done by the

load Fz�t� or Mx�t�� applied at the two ends in the virtual displace-
ment �qi.

5.2 Flexural Modal Analysis. In the case of bending, the
lateral displacement w�z , t� of a simply supported beam can be
expanded in terms of the natural modes and of the generalized
coordinates as follows:

w�z,t� = �
i

� f i
�z�qfi

�t� �20�

The expressions of mode shapes and natural �circular� frequencies
for a simply supported beam under bending are given by

� f i
�z� = �2 sin	i�

z

L

 �21�

� f i
= �i��2� EJ

mL3 �22�

If the bending moment Mx�t�, as given in Fig. 5, is applied at the
rod extremities, the generalized force for the ith mode takes the
following expression:

Qfi
�z�

mi
=

Mx����2i�

mL
�1 − �− 1�i�g��t� �23�

where m is the mass of the rod and g��t� is the unit excitation
function shown in Fig. 5.

Note that the modal shapes �21� cannot satisfy the natural
boundary condition for the actual load case �at z=0, z
=L�2w�0� /�z2=�2w�L� /�z2=0 always�; however, it can be shown
that w� tends to its true value at the ends �2w�0� /�z2

=�2w�L� /�z2=Mx�t� /EJ, provided a sufficiently large number of
terms is used for expansion �20�.

Generalized coordinates qfi
�t� are obtained by the well-known

response of a single DOF system excited by the superposition of
multiple ramp functions �27�. Given t2=0.3td and t3= td,

F1i = −
Mx�0�

m

�2i�

L
�1 − �− 1�i�

F2i = −

Mx� t2 − �

t3


m

�2i�

L
�1 − �− 1�i�

Fig. 4 Equivalent thermal bending moment M̄x„t̄… „t̄= „t−�… / td…

Fig. 5 Equivalent dynamic excitations „qualitative plot…
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F3i = −

Mx� t3 − �

t3


m

�2i�

L
�1 − �− 1�i�

F4i =
F2i� − F1it2

t2 − �

F5i = F3i −
F1it3

�
− G2i

t3 − �

t2 − �

qfi
�t � t2� =

F5i

�� f i
�2	 t − t2

t3 − t2
−

sin�� f i
�t − t2��

� f i
�t3 − t2� 


+
F4i

�� f i
�2	 t − �

t2 − �
−

sin�� f i
�t − ���

� f i
�t2 − �� 


+
F1i

�� f i
�2	 t

�
−

sin�� f i
t�

� f i
�



qfi

�� � t � t2� =
F4i

�� f i
�2	 t − �

t2 − �
−

sin�� f i
�t − ���

� f i
�t2 − �� 


+
F1i

�� f i
�2	 t

�
−

sin�� f i
t�

� f i
�



qfi

�0 � t � �� =
F1i

�� f i
�2	 t

�
−

sin�� f i
t�

� f i
�


 �24�

Dynamic bending stress induced by lateral displacement w�z , t�
immediately follows:

� f i
� �z� = − �2	 i�

L

2

sin	i�
z

L



w��z,t� = �
i

� f i
� �z�qfi

�t� �25�

� fd
�r,�,z,t� = Ew��z,t�r sin �

where w��z , t� is the second derivative of the lateral displacement
with respect to z.

In the following graphs, results are given for lateral displace-
ment and bending stress at the middle of the rod, considering an

eccentricity �=0.6R; the results are scaled to the value of static
lateral displacement ws and static bending stress � fs

:

ws	L

2

 =

Mx���L2

8EJ
�26�

� fs
=

Mx���R
J

�27�

Figure 6 shows that the dynamic response of the system is twice
as large as the static one, confirming the findings of Boley �1�; the
oscillations have a slight drift because the thermal moment de-
creases during the heat diffusion process.

Interestingly, Fig. 7 shows that the dynamic bending stress can
be almost three times larger than the static one � fs

and more than
six times larger if compared to the reference longitudinal stress
�ref=E�TF: To the authors’ knowledge, this was never evidenced
in previous works.

5.3 Longitudinal Modal Analysis. The longitudinal dynamic
stress is calculated by the same method used for dynamic bending.
In this case, the variable of interest is the longitudinal displace-
ment, which is given by

uz�z,t� = �
i

�zi
�z�qzi

�t� �28�

The generalized forces are given by

Qzi
�t�

mi
=

Fz����2

m
�1 − �− 1�i�g�t� �29�

Natural modes and natural frequencies are

�zi
�z� = �2 cos	i�

z

L

 �30�

�zi
=

i�

L
�E

�
�31�

Generalized coordinates qzi�t� are given by the response of a
single DOF system excited by a ramp function

Fzi
= −

Fz���
m

�2�1 − �− 1�i�

qzi
�t � �� =

Fzi

��zi
�2	1 −

sin��zi
t�

�zi
�

+
sin��zi

�t − ���

�zi
�


 �32�

Fig. 6 Dynamic flexural response w /ws at z=L /2 „r=R, �=3� /2, �=0.6…
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qzi
�t � �� =

Fzi

��zi
�2	 t

�
−

sin��zi
t�

�zi
�



Finally, the dynamic longitudinal stress component is calculated
as follows:

�zi
��z� = − �2

i�

L
sin	i�

z

L



uz��z,t� = �
i

�zi
��z�qzi

�t� �33�

�zd
�z,t� = Euz��z,t�

where uz��z , t� denotes the first derivative of uz, with respect to z,
i.e., the longitudinal strain.

Figure 8 shows the evolution over time of the longitudinal dy-
namic stress. The values are scaled with respect to �ref; the maxi-
mum longitudinal dynamic stress is exactly two times larger than
the reference stress value.

Figure 9 shows the progression of stress relaxation and the first
reflection of the longitudinal stress wave; t0 is the first fundamen-
tal period of longitudinal vibrations, t0=2L /c0; �c0= �E /��1/2 is
the velocity of longitudinal wave propagation�. At time t=�, the

dynamic tensile stress, relaxing the quasistatic compressive stress,
only affects the end parts of the rod �elsewhere �zd

=0�; at time
t=�+ t0 /4, the two dynamic stress waves traveling in opposite
directions have already began to superimpose, attaining �zd

/�ref

=2. At t= t0 /2, each of the two waves has reached the opposite
end, and reflection starts to play its role.

5.4 Influence of Thermal Shock Duration on Maximum
Longitudinal Dynamic Stress. In order to extend the applicabil-
ity of this method to a broader class of problems, we want to
analyze the influence of thermal shock duration � on maximum
dynamic longitudinal stress. The dynamic longitudinal stress is
considered in the middle of the rod, where the maximum value is
reached; it can be easily verified that the maximum stress at z̄
=1 /2 always occurs at time t=�+ t0 /4.

As shown by Eq. �34�, the thermal shock response spectrum H,
defined as the ratio between the dynamic and the reference stress,
is now function only of the thermal shock parameter �:

H��� =

�zd
	1

2
,� +

t0

4



�ref
�34�

By letting �0=� / t0, after some manipulations, we obtain

Fig. 7 Scaled dynamic bending stress „�fd
/�fs

and �fd
/�ref… at z=L /2

„r=R, �=3� /2, �=0.6R…

Fig. 8 Dynamic axial stress scaled to the reference stress �zd
/�ref as a

function of time at different location along the cylinder
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H��0� =
4

���i
�1 − �− 1�i

2
�1

i
+

�− 1��i−1�/2�1 − cos�i2��0��
i22��0


��− 1��i−1�/2 �35�

Figure 10 shows that the maximum longitudinal dynamic stress is
initially twice as large as the reference value. This relation holds
until the parameter � is smaller than half of the first fundamental
period t0 /2=L /c0; if the thermal shock is longer than this, the
heating process will be slower than the stress relaxation phenom-
enon occurring through wave propagation and the maximum lon-
gitudinal dynamic stress will never be reached; in other words, the
temperature rise time � is longer than the time required for the
stress wave to propagate along the rod at the speed of sound c0.

This relation between maximum longitudinal dynamic stress,
first fundamental period of the system and thermal shock duration
�, is very important in the design of systems submitted to thermal
shocks; in fact, given a heating duration �, the natural frequency
of the system could be chosen, by modifying its geometry, so as to
limit the maximum dynamic longitudinal stress.

5.5 Influence of the Ratio Between Thermal and Struc-
tural Characteristic Response Time on the Dynamic Maxi-
mum Deflection. Some considerations should also be done on the
effect of the thermal shock parameter � on the dynamic flexural
response. In this case, � is typically some orders of magnitude
smaller than the first natural period of flexural oscillation; thus,
varying � has a negligible influence on the maximum dynamic
flexural deflection. More interestingly, for the flexural behavior,
the characteristic heat diffusion time td should be compared to the
first fundamental period of bending oscillation tf =2� /� f1, as il-
lustrated by Boley �1,2� and Boley and Barber �3�, who identified
this ratio as the key parameter for the description of thermally
induced oscillations; following his notation, we define B=�td / tf.

In his papers, Boley analyzed the ratio of dynamic maximum
deflection wdyn to static maximum deflection wst as a function of
the parameter B �also known as Boley number� showing that, for
beams submitted to rapid surface heating, thermally induced vi-
brations occur only when B is close to or smaller than 1.

In this paper, we have found that the dynamic behavior depen-
dence upon B for internally heated beams is quite different.

We have first identified a range of values for B, from zero to 30,

Fig. 9 Scaled dynamic axial stress �zd
/�ref along rod length at different

instants

Fig. 10 Thermal shock longitudinal dynamic response H=�zd
„0.5,

�+ t0 /4… /�ref as a function of �0=� / t0
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which covers several engineering applications. Values of B
smaller than 1 correspond to flexible structures with low funda-
mental frequencies made up of materials with high thermal con-
ductivity; higher values of B correspond to stiffer structures or to
structures made up of materials with low thermal conductivity.

The variation of the ratio of dynamic maximum deflection to
static maximum deflection as a function of B is plotted in Fig. 11
for the case of rapid internal heating. We can observe that for
values of B larger than 2, the dynamic maximum deflection is
roughly twice the correspondent static deformation; practically,
this means that thermally induced flexural vibrations play a rel-
evant role for values of B larger than 1.

For engineering design purposes, we present an analytical func-
tion that interpolates the exact curve �see Fig. 11�:

wdyn

wst
= 	 2B2

0.1 + B2
�1 − e−�B2/2.3� �36�

It is also possible to evaluate the variation of the ratio of maxi-
mum dynamic bending stress to static bending stress with param-
eter B �see Fig. 12�. As already shown in Sec. 5.2, this ratio could
reach a value up to 3 �see Fig. 7�.

Results showed above are quite different from the one pre-
sented by Boley in his papers �1–3�. Nevertheless, we can confirm
that Boley’s number is the key parameter that governs the dy-
namic phenomenon of thermally induced vibration; but, the range

of values for B and the relation between B and the dynamic flex-
ural response of the structure are different depending on thermal
boundary conditions.

5.6 Global Axial Stress. The global axial stress, as already
mentioned, can be evaluated superimposing the zero-strain quasi-
static component with the dynamic bending stress and the dy-
namic longitudinal stress:

�̄ztot
=

�z0 + � fd
+ �zd

�ref
�37�

Figure 13 gives the evolution over time of the axial global stress
scaled to the reference stress. It is important to observe that the
peak value for the global stress at r=R, �=3� /2, and �=0.6R is
roughly six times larger than the reference stress and occurs at a
time 100 times longer than the shock duration �tf �1 ms against
��10 �s�.

This gives a valuable indication for the design of accelerator
components submitted to thermal shocks.

5.7 Discussion on Radial Inertia Effect and Weak Ther-
moelastic Coupling. At this point of the analysis, we want to
clarify with a brief discussion the initial assumptions of neglecting
the influence of radial inertia on the longitudinal dynamic behav-

Fig. 11 Variation of the ratio of dynamic maximum deflection to static
maximum deflection with parameter B at z=L /2

Fig. 12 Variation of the ratio of maximum dynamic bending stress to
static bending stress with parameter B at z=L /2
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ior and of weak thermoelastic coupling.
For radial inertia, we follow the considerations made by Graff

�22�. He found that, beyond a limiting working frequency, radial
inertia must be considered and the simplified theory of longitudi-
nal wave propagation in cylindrical rods cannot be applied.

Following Graff’s notation, we define several nondimensional
quantities: velocity of longitudinal wave propagation c̄, wave
number ̄, and pulse frequency �̄:

c̄ =
c

c0

c0 =�E

�

̄ = �


�̄ = ̄c̄

� =
R
�2

�38�

Here, � is the radius of gyration of the cylinder, 
 is Poisson’s
ratio, c is the actual velocity of longitudinal wave propagation,
and c0 is the reference value from the classical wave equation.
After some simple manipulations, we obtain

̄ =

�R
�2c

�39�

If ̄�1, the simplified classical theory of wave propagation can
be applied and the effects of radial inertia can be neglected.

We can make some remarks on expression �39�: If ̄�1, we
can assume c=c0 �as confirmed also by Suhubi �28�, for the case
of infinitely long cylinders� and �=�c0 /L. Replacing in �39�, we
obtain


�

�2

R

L
� 1 �40�

Since 
 can assume values between 0 and 0.5, it is possible to
write that

R

L
� 1 �41�

If �41� is verified, then the restriction on radial inertia is valid. For
the application studied in this paper, L=100 mm and R=2.5 mm;

so, expression �41� is valid.
Concerning the weak thermoelastic coupling hypothesis, we

follow the study of Boley and Weiner �23� showing that this as-
sumption is valid if the strain rate is of the same order of magni-
tude of the temperature rate.

The coupled thermoelastic heat conduction equation in indicial
notation is given by

K�2T = �cpṪ + �3� + 2���T�̇kk �42�

In �42�, � and � are Lamé’s constants and �̇kk is the trace of the
strain rate tensor. From expression �42�, neglecting radial and cir-
cumferential terms, we immediately obtain the thermoelastic cou-
pling term �; if ��1, then the weak coupling assumption can be
applied:

K�2T = �cpṪ�1 + ��

��r,�,z,t� = � �3� + 2���T

�cp
	 �̇z

Ṫ

 �43�

In expression �41�, �̇z=� /�t��zd
�z , t�+� fd

�z ,r ,� , t�� is the time de-
rivative of the dynamic axial strain due to flexural and longitudi-
nal oscillations.

Figure 14 shows the evolution over time of the thermoelastic
coupling term � evaluated at z=L /2 in the coldest zone of the rod
cross section �R ,� /2�, where the temperature change rate is small
and the strain rate is high; it is possible to observe that the param-
eter is always much smaller than unit; so, the weak coupling as-
sumption is valid, at least in the first milliseconds of the analysis.

6 Comparison With Experimental Results
We present here a comparison between the analytical model

described in this paper and the experimental measurements per-
formed at CERN on a CNGS target rod hit by a proton beam. The
experimental test exploits the procedure elaborated by Wilfinger
�20�: A laser Doppler vibrometer suitably positioned picks up the
lateral velocity of the rod surface at z=L /2; the flexural displace-
ment is obtained by integrating the recorded signal.

Figure 15 shows the comparison between experimental data and
analytical calculation: We can observe that the frequency and the
shape of the flexural oscillations of the rod are in very good agree-
ment; the amplitude is scaled with respect to the intensity and
position of the proton beam impacting the rod ��, �, �, and Umax
are directly dependent on the proton beam parameters�. The dis-

Fig. 13 Scaled global axial stress �ztot
/�ref and quasistatic axial stress

�z0 /�ref as a function of time at r=R, �=3� /2, �=0.6R „logarithmic scale…

031010-10 / Vol. 75, MAY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



crepancy between the curves shown in Fig. 15 is mainly due to
damping, not considered in the analytical model.

Experimental measurements showed that CNGS target rods be-
haved as if they were completely free at the extremities rather
than simply supported because of mechanical play on the bear-
ings. Flexural dynamic displacement shown in Fig. 15 has been
obtained using expressions for modal shapes and natural circular
frequencies derived by Blevins �29�, instead of those given in �21�
and �22�.

For a free-free rod, the expressions of the natural circular fre-
quencies and of the modal shapes are as follows:

� fi = �i
2� EJ

mL3 �44�

� fi�z� = cosh	� fi
z

L

 + cos	� fi

z

L

 − �i�sinh	� fi

z

L

 + sin	� fi

z

L



�45�

In expression �44�, coefficients �i can be evaluated numerically if
i�5 while �i= �2i+1�� /2 if i�5.

Similarly, in expression �45�, coefficients �i can be evaluated
numerically if i�5 and �i=1 if i�5.

By using formulas �44� and �45�, it is possible to obtain the
displacement w�z , t� by means of expression �20�. Figure 15
shows that the period of flexural oscillation is roughly 1 ms; if we
consider the simply supported rod, we can observe a period of
flexural oscillation of more than 2 ms, as shown in Fig. 6. The
difference is due to the distinct support conditions of the rod.

7 Summary and Conclusions
The analytical model presented in this paper allows the com-

plete evaluation, within the linear elastic domain, of quasistatic
and dynamic thermal stresses induced in an isotropic cylindrical
rod by rapid internal heating.

We have considered a heat deposition constant over the rod
length with a Gaussian distribution over the cross section, which
is typically provoked by subnuclear particle beams directly im-
pacting the rod. However, the method can be extended to any
other problem of thermal shock on cylindrical rods with an arbi-
trary energy distribution on the cross-section, longitudinally con-
stant.

As compared to previous studies, the approach used in this

Fig. 14 Thermoelastic coupling term as a function of time at r=R,
�=� /2

Fig. 15 Flexural displacement at the rod center z=L /2; comparison be-
tween analytical model and experimental data
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paper, to the authors’ knowledge, is original and allows a fast
evaluation of the complex stress field induced by thermal shocks
acting on isotropic cylindrical rods.

The solution of the problem is divided into three main steps: the
evaluation of the temperature distribution as a function of space
and time, the evaluation of the quasistatic thermal stress compo-
nents, and the study of the dynamic problem both for the longitu-
dinal and flexural behaviors.

On the basis of the aforementioned assumptions, the heat dif-
fusion equation is solved using a Fourier–Bessel expansion. Once
the temperature distribution is known, quasistatic stresses have
been calculated by means of the thermoelastic displacement po-
tential in the plane-strain hypothesis; Airy stress function is also
applied to restore the free boundary condition on the lateral sur-
face of the cylinder.

Due to the rapidity of the heat deposition, the inertia effect of
the structure cannot be neglected: Two equivalent variable loads
Fz�t� and Mx�t� applied at the extremities of the rod are introduced
to model the effect of the fast nonuniform temperature rise and
restore the correct boundary conditions; the response of the sys-
tem is evaluated by way of the mode-summation method.

The global axial stress can be assessed via the superposition of
the quasistatic axial stress at zero-axial strain with the longitudinal
and flexural dynamic stresses induced by Fz�t� and Mx�t�. An
analytical expression has been developed to describe the influence
of the thermal shock duration � on the maximum dynamic longi-
tudinal stress.

The influence of the ratio between thermal and structural char-
acteristic response times �Boley number B� on the dynamic maxi-
mum deflection has been studied and extended to the case of rapid
internal heating: It has been confirmed that B is the key parameter
for evaluating the dynamic behavior of a rapidly heated slender
structure; however, this behavior depends on the way the heating
occurs and on the thermal boundary conditions.

In the last section, a comparison between the analytical model
and an experimental measurement is presented; curves show that
the analytical calculations give very good prediction of the real
behavior of the structure.

The model developed permits to quickly obtain good estimates
of the thermoelastic behavior of isotropic rods submitted to ther-
mal shocks. Among other findings, it is worth noting that, for the
case of interest, dynamic bending stress can be up to three times
larger than the corresponding quasistatic stress.

The results of this study could be usefully applied for the de-
sign of slender structures submitted to thermal shocks typically
used in particle accelerator technology, but easily extendable to
aerospace and nuclear applications.

Nomenclature
A=�R2 � cross-section area

E � Young’s modulus
J=�R4 /4 � cross-section moment of inertia

K � thermal conductivity
L � length of the cylinder
R � radius of the cylinder
T � temperature

TF � final uniform temperature

T̄=T /TF � nondimensional temperature
Umax � maximum deposited specific

energy

c0=�E /� � velocity of longitudinal waves
�classical wave equation�

cp � specific heat
m=�AL � mass of the rod

r � radial coordinate
r̄=r /R � nondimensional radial coordinate

qf � flexural generalized coordinate for
modal analysis

qz � longitudinal generalized coordi-
nate for modal analysis

t � time coordinate
t̄= �t−�� / td � nondimensional time coordinate

t0=2L /c0 � fundamental period of longitudi-
nal vibrations

td=R2 /� � thermal diffusion time
uz � longitudinal displacement
w � lateral displacement �rod

deflection�
z � longitudinal coordinate

z̄=z /L � nondimensional longitudinal
coordinate

� � thermoelastic coupling term

�̄=� / �E�TF� � nondimensional Airy stress
function

� � thermal expansion coefficient
� � eccentricity of the energy distribu-

tion with respect to the rod axis
�̄=� /R � nondimensional eccentricity

� � angular coordinate
�=K /�cp � thermal diffusivity

�=
E / ��1+
��1−2
�� � first Lamé’s constant
�=G=E /2�1+
� � second Lamé’s constant


 � Poisson’s ratio
� � density

�ref=E�TF � reference axial stress
� � thermal shock duration
� � standard deviation of the energy

�Gaussian� distribution
�̄=� /R � dimensionless standard deviation

of the energy distribution
�z � longitudinal modal shape
� f � flexural modal shape
	 � displacement potential

	̄=	 / ��TF�� � nondimensional displacement
potential
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Homogenization Based 3D
Continuum Damage Mechanics
Model for Composites
Undergoing Microstructural
Debonding
This paper develops a microscopic homogenization based continuum damage mechanics
(HCDM) model framework for fiber reinforced composites undergoing interfacial deb-
onding. It is an advancement over the 2D HCDM model developed by Raghavan and
Ghosh (2005, “A Continuum Damage Mechanics Model for Unidirectional Composites
Undergoing Interfacial Debonding,” Mech. Mater., 37(9), pp. 955–979), which does not
yield accurate results for nonproportional loading histories. The present paper over-
comes this shortcoming through the introduction of a principal damage coordinate sys-
tem (PDCS) in the HCDM representation, which evolves with loading history. The ma-
terial behavior is represented as a continuum constitutive law involving a fourth order
orthotropic tensor with stiffness characterized as a macroscopic internal variable. The
current work also extends the model of Raghavan and Ghosh to incorporate damage in
3D composites through functional forms of the fourth order damage tensor in terms of
macroscopic strain components. The model is calibrated by homogenizing the microme-
chanical response of the representative volume element (RVE) for a few strain histories.
This parametric representation can significantly enhance the computational efficiency of
the model by avoiding the cumbersome strain space interpolations. The proposed model
is validated by comparing the CDM results with homogenized micromechanical response
of single and multiple fiber RVEs subjected to arbitrary loading history.
�DOI: 10.1115/1.2870265�

Keywords: continuum damage mechanics, homogenization, interfacial debonding, cohe-
sive zone element, principal damage coordinate system

1 Introduction
Structural failure of composite materials is inherently a multiple

scale phenomenon coupling different scales of damage initiation
and progression. Microstructural damage mechanisms and struc-
tural failure properties are sensitive to the local variations in mor-
phology, such as clustering and variations in reinforcement shape
or size. An analysis of composite materials with microstructural
heterogeneities is conventionally done with phenomenological
macroscopic properties, obtained either from macroscopic experi-
ments or by homogenizing response functions at smaller length
scales. Such homogenization schemes are important to develop
continuum constitutive or damage models to be used in a macro-
scopic computational analysis. Continuum damage mechanics
�CDM� models, developed in Refs. �1–5�, provide a framework
for macroscopic anisotropic constitutive equations reflecting dam-
age induced stiffness reduction or softening. Effective damage
parameters and variables are introduced in CDM to represent av-
erage material deterioration with diffused damage evolution at the
microscale. CDM models are of two types, viz., phenomenologi-
cal and micromechanical models. The phenomenological CDM
models �5–9� employ scalar, second order, and fourth order dam-
age tensors using mathematically and thermodynamically consis-

tent formulations of damage mechanics. In general, they do not
explicitly account for the microstructural morphology and the
evolving microscopic damage mechanisms. In most cases, dam-
age parameters are identified in a heuristic manner through a set
of macroscopic experiments for different materials. Micromechan-
ics based approaches �10–15� on the other hand, conduct a micro-
mechanical analysis of a representative volume element �RVE�
with subsequent homogenization to predict material behavior with
evolving damage. With the exception of a few, e.g., Refs.
�2,12,16–18� most damage models account for neither the evolu-
tion of damage nor the effect of loading history in the damage
parameters. A significant error can consequently accrue in the so-
lution of problems, especially those that involve nonproportional
loading. Some homogenization studies, e.g., Refs. �12,17�, have
overcome this shortcoming through the introduction of simulta-
neous RVE-based microscopic and macroscopic analyses in each
load step. However, such approaches can be computationally very
expensive since detailed micromechanical analyses need to be
conducted in each load step at every integration point in elements
of the macroscopic structure.

Raghavan and Ghosh �16� and Ghosh �19� have recently devel-
oped a computationally efficient, 2D anisotropic homogenization
based CDM �HCDM� model for unidirectional composites with
microstructural damage in the form of fiber-matrix interface deco-
hesion. The model is constructed by homogenizing evolving dam-
age variables in micromechanical analyses of a representative mi-
crostructural volume element. Micromechanical analyses of fiber-
matrix debonding in nonuniform composite microstructures are
conducted by the Voronoi cell finite element model �FEM�
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�20,21�. The HCDM model has been successfully used for a mac-
roscopic analysis in multiscale modeling of composites undergo-
ing fiber-matrix interfacial debonding in Ref. �19�. In a multiscale
modeling framework, the use of a CDM model in regions of rela-
tively low and nonlocalized damage in the multiscale analysis
makes the overall computing very efficient. However, a top-down
localization process for a pure microscopic analysis in critical
regions of crack propagation or localized instability should neces-
sarily accompany the macroscopic analysis to accurately predict
catastrophic failure �19,22,23�. Physically based error measures
are devised to initiate level change to regions of detailed micro-
structural analysis only at locations where the assumptions of
RVE-based homogenization break down.

The anisotropic 2D HCDM model in Ref. �16� does not incor-
porate the effects of the path dependent load history on the dam-
age variables; hence, its predictions are not accurate for, e.g., non-
proportional loading cases. The present paper is aimed at
overcoming the limitations of this model through the introduction
of a principal damage coordinate system �PDCS�, which evolves
with the loading history. The PDCS has been used for a phenom-
enological damage model in Ref. �24� to predict formability of
viscoplastic materials. The current work also extends the model in
Ref. �16� to incorporate damage in 3D composites through func-
tional forms of the fourth order damage tensor in terms of mac-
roscopic strain components. Development and calibration of the
parametric functions require micromechanical RVE analysis along
different strain loading paths. This parametric representation can
significantly enhance the computational efficiency of the model by
avoiding the cumbersome strain space interpolations in Ref. �16�.
The paper starts with a review of the 2D HCDM model of Ref.
�16� in Sec. 2. Section 3 discusses the 3D HCDM model with a
brief description of the micromechanics model. The accuracy of
the model is demonstrated through numerical examples in Sec. 4.

2 Review of Micromechanical Homogenization Based
2D CDM Model

The 2D continuum damage model developed in Ref. �16� re-
quires micromechanical analyses of composite microstructures
undergoing explicit forms of damage, e.g., interfacial debonding
or matrix cracking. The powerful Voronoi cell FEM �VCFEM�
that has been developed in Refs. �20,21� is used for this analysis.
A typical microstructural RVE model of Voronoi cell elements is
shown in Fig. 1. In contrast to conventional FEM formulations,
VCFEM makes the following assumptions. In each Voronoi cell
element �e, the stress fields �ij

m in the matrix phase �m and �ij
c in

the inclusion phase �c are independent and equilibrated, and are
expressed as

��m� = �Pm���m� in �m and ��c� = �Pc���c� in �c �1�

where the matrices �Pm/c� are obtained from assumed stress func-
tions and ��m/c� are unknown coefficients to be solved. Compat-
ible displacement fields ui

e are assumed on each Voronoi cell ele-
ment boundary ��e and interpolated in terms of displacements of
the boundary nodes qi

e as

�ue� = �Le��qe� �2�

Compatible displacement fields ui
m and ui

c are assumed on the
matrix and inclusion sides of the matrix-inclusion interface ��c,
respectively, and are interpolated from displacements qi

m and qi
c of

the interface nodes as

�um� = �Lc��qm� on ��c
m and �uc� = �Lc��qc� on ��c

c �3�

where interpolation matrices �Le/c� are constructed using standard
linear or hierarchical shape functions.

In an incremental formulation for evolving damage, the poten-
tial energy functional for each element is expressed in terms of the
incremented stresses and displacements as

�e��ij
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Fig. 1 A 2D microstructural RVE model of Voronoi cell ele-
ments with 20 circular fibers
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Here, �1 /2�Sijkl�ij�kl is the complementary energy density, �ij
m and

�ij
c are strain fields in the matrix and inclusion phases, respec-

tively, of each Voronoi element, and t is the prescribed traction on
the boundary �tm. The prefix � corresponds to increments, and
subscripts n and t correspond to the normal and tangential direc-
tions at the matrix-inclusion interface. ne and nc are the outward
normal on ��e and ��c, respectively. The two terms on the
matrix-inclusion interface ��c

m���c
c provide the work done by

the interfacial tractions Tm=Tn
mnm+Tt

mtm due to interfacial sepa-
ration �um−uc�. Tn

m and Tt
m are the normal and tangential compo-

nents that are described by bilinear cohesive laws developed in
Ref. �25�. In this model, the relation between the traction T�
=�Tn

2+Tt
2� and the effective opening displacement ��

=��n
2+�2�t

2� in the cohesive zone model is given through a free
energy potential as

t =
�	���

��
�5�

where �n and �t�=��t1
2 +�t2

2 � are the displacement jumps in normal
and tangential directions, respectively, and the factor � provides
weight to the contribution of the tangential displacement jump.
The t-� relation in the bilinear model is expressed as

T =	
�max

�c
� if � 
 �c �hardening region�

�max

�c − �e
�� − �e� if �c � � 
 �e �softening region�

0 if � � �e �complete debonding�



�6�
Consequently, the normal and tangential tractions are derived

from the relations Tn=�	 /��n and Tti
=�	 /��ti

, where i=1,2. For
a positive normal displacement jump �n, the traction at the inter-
face increases linearly to a maximum value of �max corresponding
to �c, then starts to decrease, and finally reaches zero at a value of
�e. The unloading behavior in the hardening region follows the
same slope as that of the loading path. In the softening region,
unloading is assumed to follow a different linear path back from
the current position to the origin with a reduced stiffness. This is
expressed as

t =
�max

�max

�max − �e

�c − �e
�, �c � �max � �e and � � �max �7�

The reloading follows the hardening slope and then continues
along the softening slope. The normal and the tangential tractions
vanish when interface debonds completely, i.e., ��e. Also, the
tangential traction-displacement behavior is the same for both
positive and negative tangential separations. If the normal dis-
placement is negative, i.e., during compression, stiff penalty
springs with high stiffness are introduced between the node pairs
at the interface to prevent penetration.

Progressive debonding in composite microstructures is solved
using an incremental approach. In each increment, a set of ele-
ment and global equations are solved for stresses and displace-
ments. Equations in each element are obtained by substituting
increments of stress interpolations �Eq. �1�� and increments of
displacement interpolations �Eqs. �2� and �3�� in the element en-
ergy functional of Eq. �4� and by setting variations with respect to
the stress coefficients ��m and ��c to zero. This results in the
weak forms of the element kinematic relations,

���m

�Pm�T�Sm��Pm�d� �0�

�0� �
�c

�Pc�T�Sc��Pc�d���m + ��m

�c + ��c �

= ����e

�Pm�T�ne��Le�d�� −�
��c

�Pm�T�nc��Lc�d�� �0�

�0� �0� �
��c

�Pc�T�nc��Lc�d���	 q + �q

qm + �qm

qc + �qc 
 −	��m

�Pm�T��m�d�

�
�c

�Pc�T��c�d� 
 �8�

or in a condensed form

�He��� + ��� = �Ge��q + �q� − �R1
e� �9�

Here, �ne� and �nc� are matrices defined in terms of direction cosines of unit outward normal vectors to the element boundary and
matrix-inclusion interface, respectively. Equation �9� is linear and is solved to express the stress coefficients in terms of the nodal
displacements.

The total potential energy functional of the RVE containing NVc Voronoi cell elements, as shown in Fig. 1, is �=�e=1
NVc�e. The weak

forms of the global traction continuity conditions are solved by setting the variation of the total energy functional � with respect to �q,
�qm, and �qc, to zero. This results in the weak form of the traction reciprocity conditions as
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 �10�

or in the condensed form

�
e=1

N

�Ge�T�� + ��� = �
e=1

N

�R2
e� �11�

Substituting Eq. �9� into Eq. �11� yields

�
e=1

N

�Ge�T��He�−1�Ge��q + �q� − �R1
e�� = �

e=1

N

�R2
e� �12�

The normal and tangential components of the interfacial separa-
tion are expressed as

un + �un = �nc�T�Lc��qm + �qm − qc − �qc�

ut + �ut = �tc�T�Lc��qm + �qm − qc − �qc� �13�
Following the evaluation of nodal displacements, stress coeffi-
cients are calculated in each element using Eq. �9�. The stresses at
any location within the element may then be assessed from Eq.
�1�. As discussed in Ref. �20�, these relations are solved for dis-
placements and stresses in the microstructural RVE by imposing
displacement periodicity conditions on the RVE boundary. Equa-
tion �12� is nonlinear due to the relation between interfacial trac-
tions and interfacial displacements in the cohesive laws. A
Newton–Raphson iteration method is consequently invoked to
solve for the increments of nodal displacement on the element
boundaries and matrix-inclusion interfaces.

2.1 Anisotropic Damage Model With Fourth Order Dam-
age Tensor. The general form of CDM models �1� introduces a

fictitious stress �̃ij acting on an effective resisting area �Ã�, which
is caused by the reduction of the original resisting area A due to
material degradation from the presence of microcracks and stress
concentration in the vicinity of cracks. In Refs. �7,16�, the effec-

tive stress �̃ij is related to the actual Cauchy stress �ij through a
fourth order damage effect tensor Mijkl as

�̃ij = Mijkl�D��kl �14�

where Mijkl is a function of a damage tensor D�=Dijklei � e j � ek

� el�. D can be a zeroth, second, or fourth order tensor, depending
on the model employed. The hypothesis of equivalent elastic en-
ergy is used to evaluate Mijkl and establish a relation between the
damaged and undamaged stiffnesses �8,26�. The hypothesis, de-
tailed in Refs. �2,18�, specifically assumes that the elastic comple-

mentary energy WC in a damaged material with the actual stress is
equal to that in a hypothetical undamaged material with the ficti-
tious effective stress, i.e.,

WC��,D� =
1

2
�Eijkl�D��−1�ij�kl = WC��̃,0� =

1

2
�Eijkl

o �−1�̃ij�̃kl

�15�

where �=�ijei � e j, Eijkl
o is the elastic stiffness tensor in the un-

damaged state and Eijkl�D� is the stiffness in a damaged state.
From Eqs. �14� and �15�, the relation between the damaged and
undamaged stiffnesses is established as

Eijkl = �Mpqij�−1Epqrs
o �Mrskl�−T �16�

where −T corresponds to the transpose of the inverse of the fourth
order M tensor. With the choice of an appropriate order of the
damage tensor and the assumption of a function for Mijkl, Eq. �16�
can be used to formulate a damage evolution model using micro-
mechanics and homogenization. The anisotropic CDM model in-
volving fourth order damage tensor proposed in Ref. �16� intro-
duces a damage evolution surface to delineate the interface
between damaged and undamaged domains in the strain �eij�
space as

F =
1

2
Pijkleijekl − ���Wd� = 0 �17�

where Wd is the dissipation of the strain energy density due to
stiffness degradation expressed as �see Ref. �27��:

Wd =� 1

2
eijekldEijkl �18�

Assuming associativity rule in the stiffness space, the evolution of
the fourth order secant stiffness is obtained as

Ėijkl = �̇
�F

��1

2
eijekl� = �̇Pijkl �19�

Pijkl is a fourth order symmetric negative definite tensor that cor-
responds to the direction of the rate of stiffness degradation tensor

Ėijkl. Pijkl is expressed as a function of strain eij, � is a scaling
parameter, and � is a function of Wd. Calibration of the model
requires evaluation of ��Wd�, �, and Pijkl in Eq. �17�.

The function ��Wd� is evaluated in Ref. �16� for a reference
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loading path, and results for all other strain paths are scaled with
respect to this reference value. For the reference loading path
�e11�0, all other eij =0�; setting P1111=1, � is determined from
damage surface of Eq. �17� as

� =
1

2
e11

2 �20�

Micromechanical simulation of RVE with a circular fiber �see Fig.
2�a� or inset in Fig. 3� is performed for this load path, and the
secant stiffness Eijkl is evaluated at the end of each increment by
applying unit macroscopic strains, described in Ref. �16�. The
function ��Wd� is then determined by evaluating Wd at each strain
increment. The �-Wd plot in Fig. 3 shows that Wd increases with
evolving macroscopic strain and attains a maximum value of Wd

F

corresponding to saturation of damage in the microstructure. The
scaling parameter �, accounting for the variability of Wd

F with the
loading path, is obtained by a simple scaling relation as

��e11,e22,e12� =
Wd

F�e11,e22,e12�
Wd

F�e11 � 0,e22 = 0,e12 = 0�
�21�

For composites with interfacial debonding, the direction of
stiffness degradation rate varies significantly with increasing dam-
age; hence, Pijkl is a function of the total macroscopic strain eij.
To evaluate this dependence, the macroscopic strain space is dis-
cretized into a uniform grid that is created by periodic intercepts
on each proportionally loaded strain path. Values of Pijkl at each
grid point are evaluated by homogenizing the RVE-based micro-
mechanical analysis results. The evaluation of Pijkl involves inte-
gration of Eq. �19� with satisfaction of consistency condition in
Eq. �17� at each strain increment. Once the values of Pijkl are
evaluated at the grid points, their values for any arbitrary macro-
scopic strain can be determined by interpolating in the
�e11,e22,e12� strain space using shape functions of linear hexahe-
dral elements as

Pijkl�e11,e22,e12� = �
�=1

8

�Pijkl��N��e11,e22,e12� �22�

Details of the parameter evaluation process for the anisotropic
damage model and the subsequent stress update algorithm using
the HCDM model are given in Ref. �16�.

2.2 Limitations of the Model in Reference [16]. The HCDM
model in Ref. �16� provides a general framework for describing
evolving damage at the microscale using continuum constitutive
laws at the macroscale. A comparison of CDM results with the

(a)

(b)

(c)

(d)

Fig. 2 Finite element mesh for „a… RVE with a cylindrical fiber,
„b… RVE with an elliptical fiber, „c… RVE with two parallel fibers,
and „d… RVE with two perpendicular fibers

Fig. 3 �-Wd plot for a RVE with circular fiber subjected to
uniaxial tension
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homogenized microscopic response shows excellent agreement
�16� for proportional loading conditions. However, the model suf-
fers from limitations as discussed below.

1. While components of Pijkl in Eq. �19� depend on the current
location in the �e11,e22,e12� strain space, their dependence
on the strain path or history is not explicitly accounted for.
To understand the error incurred due to this assumption, a
VCFEM based micromechanical analysis is conducted for
nonproportional loading. A RVE consisting of a circular fi-
ber of 20% volume fraction in a square matrix, as shown in
Fig. 3, is modeled. The elastic matrix has Em=4.6 GPa and
�m=0.4, and the elastic fiber has Em=210 GPa and �m=0.3.
The interface properties in Eq. �6� are �c=5.0�10−5 m, �e
=20�10−4 m, and �m=0.02 GPa. The macroscopic FEM
that uses the HCDM model consists of a single four-noded
quadrilateral �QUAD4� element. The material is subjected to
a nonproportional strain path, viz., initial uniaxial tension
e11�0, e22=e12=0, followed by a strain path corresponding
to e12 /e11�0, e22=0. Results by the two models, viz.,
HCDM and averaging micromechanics, are compared in
Fig. 4. The first part of the loading, corresponding to pro-
portional loading, shows excellent agreement. However, sig-
nificant error is incurred in predicting the response for the
subsequent nonproportional portion of the loading. This ne-
cessitates the incorporation of loading history effect in the
HCDM formulation.

2. The 2D CDM model in Ref. �16� describes material damage
behavior for interfacial debonding in unidirectional compos-
ites subjected to in-plane loading. A 3D CDM model is de-
sirable to describe the damage in fiber reinforced composites
with randomly oriented fibers and subjected to multiaxial
loading histories. The corresponding components of Pijkl in
Sec. 2.1 will be functions of the six independent components
of strain tensor eij. According to the algorithm described in
Ref. �16�, this will necessitate evaluation and storage of each
component of Pijkl at discrete points of the macroscopic
strain evolution paths in a six dimensional strain space. A
large number of micromechanical RVE analyses should be
carried out followed by homogenization. Subsequently, in
macroscopic analysis using the HCDM model, all indepen-
dent components of Pijkl will be interpolated in the six di-
mensional strain space. The discrete strain space representa-
tion and interpolation makes the model construction and use
computationally prohibitive and cumbersome. Functional
forms of Pijkl are more desirable and will be derived in the
present work.

3 Homogenization Based 3D Continuum Damage Me-
chanics Model

3.1 Micromechanical Model of the RVE Including
Debonding. A 3D micromechanical model for analyses of com-
posite microstructures undergoing fiber-matrix interfacial debond-
ing has been developed by the authors in Ref. �28�. In this model,
the interface is comprised of a set of nonlinear cohesive springs
with bilinear traction-displacement relations discussed in Sec. 2.
The bilinear cohesive zone models have yielded satisfactory
agreement with experiments for composites described in Refs.
�21,29�. In Ref. �28�, 3D interface elements using the cohesive
laws are developed in the user defined element �UEL� subroutine
of the commercial FE code ABAQUS. As detailed in Ref. �28�, the
interface elements have 16 nodes with a quadratic displacement
interpolation, corresponding to a total of 48 degrees of freedom
with nine integration points. They are compatible with the 20
noded quadratic brick elements that are used to model the fiber
and matrix phases in ABAQUS, as shown in Fig. 2�a�. In the initial
unloaded state, the interface nodes on the matrix and fiber sur-
faces share the same coordinates. With the application of external

load and deformation, the surfaces move and separate from one
another. The relative normal and tangential tractions for the inter-
face elements are calculated at the element integration points ac-
cording to the traction separation law in Sec. 2.

Volume averaged variables such as stresses �ij and strains eij,
required to develop and calibrate the HCDM model, are evaluated
by homogenization of micromechanical solutions using the ex-
pressions
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Fig. 4 Comparison of macroscopic stress-strain curve ob-
tained using the 2D homogenized CDM model and HMM under
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�ij =
1

Y�
Y

�ij�Y�dY

and

eij =
1

Y�
Y

�ij�Y�dY +
1

2Y�
�Yint

��ui�nj + �uj�ni�dS �23�

where �ij and �ij are microscopic stress and strain, respectively
and Y is the RVE domain. Y int corresponds to the fiber-matrix
interface domain and �ui� denotes the jump in the displacement
components across the interface with outward normal ni. The
components of the homogenized elastic stiffness tensor Eijkl are
calculated by solving six independent boundary value problems.
In each case, only a single unit strain component is applied on the
RVE, while the other strain components are kept to zero; i.e., Case
1, e11=1.00, all other components 0.0; Case 2, e22=1.00, all other
components=0.0; and so on. Periodicity displacement conditions
are enforced by constraining nodes on opposite faces of the RVE
boundary to deform in a periodic manner. A given macroscopic
strain is applied on the RVE by decomposing the displacement on
the boundary into a macroscopic averaged and a periodic part as
discussed in Refs. �30,31�, i.e.,

ui = eijxj + ũi �24�

Since the periodic part ũi is equal on corresponding nodes of
opposite faces of the RVE �say, n1

p and n2
p�, the total displacement

at these nodes are related as

�ui�n2
p − �ui�n1

p = eij�xj �25�

where �xi are the relative nodal coordinates. The macroscopic
strains are then applied, in conjunction with the periodicity con-
straints, by fixing a corner node and specifying the displacement
on master nodes M1, M2, and M3 that belong to orthogonal faces,
as shown in Fig. 2�a�.

The RVE with a circular fiber in Sec. 2.2 is now analyzed in
3D, subject to uniaxial tension. Figures 5�a� and 5�b� show a
comparison of the homogenized stress-strain curve and the in-
plane secant stiffness components obtained by the 2D VCFEM
model and the 3D ABAQUS model with debonding. Results by the
two methods show excellent agreement. The stiffness components
rapidly decay during the initial stages of debonding and eventu-
ally stabilize at values corresponding to that of a RVE with a void,
when the interface separates completely. The out-of-plane stiff-

ness components obtained from the 3D model are plotted in Fig.
6. As expected, the stiffness component E3333 along the length of
the fiber is significantly higher than other components. This com-
ponent undergoes very little degradation as fibers continue to sup-
port the load even after the interface has debonded.

3.2 HCDM Model in the Principal Damage Coordinate
System (PDCS). For a second order damage tensor Dij, the dam-
age effect tensor Mijkl in Eq. �14� has been defined in Ref. �32� as

Mijkl = ��ik − Dik�−1� jl �26�

It has been shown in Ref. �32� that Dij is symmetric, and it can
describe the damage states that have at least an orthotropic sym-
metry. For any arbitrary Dij, the corresponding effective stress
tensor, obtained by substituting Eq. �26� into Eq. �14�, may be
unsymmetric. An implicit method of rendering the stress tensor
symmetric has been suggested in Ref. �33�, which corresponds to
a representation of the stress tensor in a fixed global coordinate
system as

�ij =
�̃ik��kj − Dkj�−1 + ��il − Dil�−1�̃lj

2
�27�

The corresponding inverse of the damage effect tensor �M�Dij��−1

is represented in a matrix form as

�M�Dij��−1 = �
1 − D11 0 0 0 − D13 − D12

0 1 − D22 0 − D23 0 − D12

0 0 1 − D33 − D23 − D13 0

0 −
1

2
D23 −

1

2
D23 1 −

1

2
�D22 + D33� − D12 − D13

−
1

2
D13 0 −

1

2
D13 −

1

2
D12 1 −

1

2
�D11 + D33� − D23

−
1

2
D12 −

1

2
D12 0 −

1

2
D13 −

1

2
D23 1 −

1

2
�D11 + D22�

� �28�

This can be substituted in Eq. �16� to update the damaged stiffness
Eijkl from the initial undamaged stiffness Eijkl

o .
Numerical examples in Ref. �16� have shown that material sym-

metry is considerably affected by damage evolution in composite

microstructures. Different load paths will yield different damage
profiles in the microstructure, and this will alter the initial material
symmetry in Eijkl

o in different ways. In a fixed coordinate system,
a RVE exhibiting, e.g., orthotropy in Eijkl

o can exhibit general an-
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Fig. 6 Degradation of components of secant stiffness in third
direction
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isotropy with evolving damage under multiaxial loading. In the
fixed coordinate system, the anisotropic Eijkl will couple normal
and shear strain components in the elastic energy expression.
However, when the strains are represented in a coordinate system
that corresponds to the principal damage axes, the coupling terms
in the stiffness Eijkl reduce to near vanishing values and the initial
symmetry properties are retained.

The present work assumes orthotropy of the homogenized stiff-
ness matrix in the PDCS. The damage effect tensor Mijkl corre-
sponding to Eq. �28� has a diagonal representation in this coordi-
nate system; consequently, the initial material symmetry is
retained throughout the loading process. The determination of the
continuously evolving PDCS requires the determination of the
second order damage tensor Dij and the subsequent evaluation of
its eigenvectors at each step of the incremental loading process.
For known values of Eijkl

o and Eijkl, Eq. �16� results in a system of
nonlinear algebraic equations in Dij. Since there are nine indepen-
dent components of the orthotropic stiffness tensor Eijkl and six
independent components of the symmetric Dij, a nonlinear least
squares minimization solver is used to solve for Dij. Subsequently,
the eigenvectors of Dij, viz., eD1, eD2, and eD3 are evaluated and
the transformation matrix �Q�D= �eD1 eD2 eD3� is formed. �Q�D

leads to the rotation of the global coordinate system to the PDCS.

3.2.1 Numerical Example on the Evolution of PDCS. To un-
derstand the evolution of PDCS on load history, the problem con-
sidered in Sec. 2.2 is solved, subject to the following two load
histories:

1. Case a: Proportional loading with strain path e12 /e11�0,
e22=0 throughout.

2. Case b: Nonproportional loading with e11�0, e22=e12=0 in
the first half of the loading, followed by a strain path of
e12 /e11�0, e22=0 till the end.

The final state of macroscopic strain eij for both cases is identical.
Along each of these load paths, the homogenized secant stiffness
of the damaging material Eijkl is calculated, followed by determi-
nation of the PDCS. Figures 7�a� and 7�b� show the orientation of
the PDCS in the final deformed configuration for the two cases.
For the proportional loading Case a, the orientation of the damage
axes jumps to and remains fixed at 24 deg with respect to the
global axes throughout the damaging process. For Case b, the
PDCS coincides with the global coordinate system in simple ten-
sion during the first half of loading. In the last half of loading, the
PDCS continuously rotates to a final position of 21 deg orienta-

tion. Certainly, in this case, the PDCS rotation should be incorpo-
rated in the HCDM model to account for the damage and load
history.

3.3 Orthotropic Damage Model With Fourth Order Dam-
age Tensor

3.3.1 Damage Evolution Laws in the PDCS. The damage evo-
lution surface of Eq. �17� is rewritten in the PDCS as

F� =
1

2
eij�Pijkl� ekl� − ���Wd� = 0 �29�

where the prime in the superscript denotes quantities expressed in
the PDCS using the transformation laws

Eijkl� = QipQjqQkrQlsEpqrs and eij� = QikQjlekl �30�

and Qij is the transformation matrix. The corresponding rate of
stiffness degradation in PDCS is

Ėijkl� = �̇
�F�

��1

2
eij�ekl� � = �̇Pijkl� �31�

3.3.2 Parametric Forms in the HCDM Model and Their Cali-
bration

3.3.2.1 Damage state variable ��. As described in Sec. 2.1,
the function ����Wd� is evaluated for the reference loading path
�e11�0, all other eij =0� using Eq. �29� as

�� =
1

2
�e11� �2 �32�

The ��-Wd plots for four different strain paths are shown with
circular marks in Fig. 8. The loading cases are

1. simple shear: e12=0.012
2. tension-torsion: e11=0.006 and e12=0.010
3. multiaxial tension-torsion: e11=0.009, e22=0.002, and e12

=0.006
4. uniaxial tension: e11=0.012

In these plots, Wd remains zero until �� exceeds a threshold value
corresponding to the initiation of debonding induced damage.
Subsequently, Wd increases rapidly, signaling substantial material
deterioration during the initial stages of damage. Eventually, Wd

saturates at a value Wd
F corresponding to configuration with ar-

(a) (b)

Fig. 7 Rotation of the PDCS for „a… proportional and „b… nonproportional loading paths
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rested debond or fully debonded interface. Insignificant or no deg-
radation occurs after this. It is observed that all of the RVEs have
the same nature, and only the value of Wd

F varies for different
strain histories. The variability of the saturation damage energy
Wd

F with loading paths in the 3D strain space can be taken into
account using the scaling factor ��eij� defined in Eq. �21�. How-
ever, such an approach requires evaluation and storage of ��eij�
for a large number of individual loading paths for interpolation, as
discussed in Sec. 2.2.

To avoid this in the 3D analysis, novel functional forms of ��
are introduced to explicitly describe its dependence on the mac-
roscopic strain components eij, as well as on Wd. Three invariant
forms of the strain components, consistent with the anisotropic
material property model, are used in these functions. These are

I1 =
1

3
�Ae11 + Be22 + Ce33�

J2 = F�e22
d − e33

d �2 + G�e33
d − e11

d �2 + H�e11
d − e22

d �2 + L�e12
d �2

+ M�e13
d �2 + N�e23

d �2

J3 = O�e11
d e22

d e33
d � + P�e11

d �e23
d �2� + Q��e12

d �2e33
d � + R�e13

d e12
d e23

d �

+ S��e13
d �2e22

d � �33�

where eij
d =eij −

1
3�ijekk is the deviatoric strain tensor. The invari-

ants I1, J2, and J3 are, respectively, linear, quadratic, and cubic

functions of eij. The constants A ,B ,C ,F ,G , . . . ,S are introduced
to characterize the state of anisotropy in the damaged material.
The function J2 is similar to that used in the anisotropic yield
criterion for elastoplasticity proposed by Hill �34�. The functional
form of �� is developed to conform with the plots of Fig. 8, and is
expressed as

���I1,J2,J3,Wd� = b0 + f�I1,J2,J3��1 + b1 tan�b2Wd�� �34�
The form separates its dependence on the dissipation energy and
strains. The latter dependence is represented by a polynomial
function of the invariants, i.e.,

f�I1,J2,J3� = a0 + a1I1 + a2J2 + a3J3 + a4I1
2 + a5I1J2 + ¯ �35�

The constants A ,B ,C , . . .. in Eq. �33�, b0 ,b1 ,b2 in Eq. �34�, and
a0 ,a1 , . . .. in Eq. �35� are determined by a nonlinear least squares
minimization of the difference between results of micromechani-
cal analysis and those from the functional form in Eq. �34�, i.e.,

minimize �
i=1

Nref

��ref� − ���I1,J2,J3,Wd��i
2 �36�

A micromechanical analysis of the RVE is conducted for Nref
different strain histories to explicitly compute the values of �ref� . A
fifth order polynomial function in Eq. �35� yields good conver-
gence properties for the least squares residual. Figure 8 satisfac-
torily compares the ��-Wd plots by the function in Eq. �34� with

Table 1 Constants in the parametric representation of I1, J2, and J3 in Eq. „33… for various
RVEs

Constants
in Eq. �33�

RVE in
Fig. 2�a�

RVE in
Fig. 2�b�

RVE in
Fig. 2�c�

RVE in
Fig. 2�d�

RVE in
Fig. 1

A 0.32 0.30 0.07 0.22 1.39
B 0.32 0.59 0.66 0.21 1.32
C 0.02 0.89 0.69 0.22 —
F 0.02 0.35 0.02 0.65 0.01
G 0.02 0.35 1.85 0.71 0.01
H 0.42 1.64 1.85 0.65 0.02
L 0.18 0.41 0.58 1.76 2.20
M 0.38 2.28 2.60 0.23 —
N 0.38 2.35 0.06 1.76 —
O 0.00 1.87 0.03 0.45 1.50
P 0.16 0.98 2.27 0.43 —
Q 0.34 0.05 2.03 0.43 0.30
R 0.13 0.41 0.08 0.07 —
S 0.16 0.13 1.67 0.12 —
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Fig. 8 Functional representation of the �-Wd relation
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those from the micromechanical analysis for the different strain
paths.

3.3.2.2 Damage evolution surface parameter Pijkl� . In the in-
cremental finite element formulation for evolving damage, the
backward Euler method is used to integrate the rate of stiffness
degradation in Eq. �31�. For a strain increment from step n to step
n+1, the parameter Pijkl� may be expressed as

�Pijkl� �n+1 =
�Eijkl� �n+1 − �Eijkl� �n

�n+1 − �n
�37�

where �Eijkl�n+1 is the secant stiffness at the end of the increment.
As explained in Sec. 3.1, this is calculated by unloading to the
origin from the current state of stress. Substituting this into the
damage evolution, Eq. �29� at the end of the increment yields the
incremented form

1

2
�eij� �n+1� �Eijkl� �n+1 − �Eijkl� �n

�n+1 − �n
��ekl� �n+1 − �n+1� = 0 �38�

where �n+1� �I1 ,J2 ,J3 ,Wd� represents the size of the parametric
damage surface. The dissipation energy �Wd�n+1 at the end of the
interval is evaluated by using the backward Euler integration
method. The parameter �n+1 is evaluated as

�n+1 = �n +

1

2
�eij� �n+1��Eijkl� �n+1 − �Eijkl� �n��ekl� �n+1

�n+1�
�39�

�Pijkl� �n+1 is then determined from Eq. �37�. The direction of the
rate of stiffness degradation varies continuously with damage evo-
lution due to macroscopic strain. From Eq. �31�, this implies that
Pijkl� also varies accordingly. The method of strain space interpo-
lation in Ref. �16� would require Pijkl� evaluation and storage at a
large number of points for a wide range of strain combinations.
This enterprise can become prohibitively exhaustive for 3D prob-
lems. To avoid this, a polynomial function form is derived for the
components Pijkl� in terms of the anisotropic invariants of strain
defined in Eq. �33� as

Pijkl� �I1,J2,J3� = c0
ijkl + c1

ijklI1 + c2
ijklJ2 + c3

ijklJ3 + c4
ijklI1

2 + c5
ijklI1J2

+ ¯ �40�

Again, the coefficients cp
ijkl in Eq. �40� are determined by the

nonlinear least squares solver. In this method, the square of the
difference in Pijkl� obtained from micromechanical analysis and the
functional form for a few representative strain paths is minimized,
i.e.,

minimize �
i=1

Nref

��Pijkl� �ref − Pijkl� �I1,J2,J3��i
2 �41�

The subscript “ref” corresponds to data points obtained by micro-
mechanical analysis. Figure 9 shows a comparison of the micro-
mechanical results and the calibrated function in Eq. �40� for a
RVE under uniaxial tension. With a fifth order polynomial func-
tion �Eq. �40��, the root mean square error is observed to be less
than 3%. The coefficients can be used subsequently for computing
Pijkl� for any given strain eij during the macroscopic analysis.

3.4 Implementation of the HCDM Model in a Macroscopic
Analysis Module. The HCDM model is implemented in the mac-
roscopic FEM in ABAQUS using the user material interface
�UMAT�. In an incremental solution process, subscripts n and n
+1 correspond to values at the beginning and end of the nth in-
crement, respectively. At each element integration point, the
stresses ��ij�n+1 are obtained from known values of the strain
�eij�n+1 and state variables at n using the HCDM constitutive
model. The essential steps in the UMAT update algorithm in the
nth increment are described below.

1. For given �eij�n+1, evaluate �I1�n+1, �J2�n+1, and �J3�n+1 using
Eq. �33� and, subsequently, �Pijkl� �n+1 using Eq. �40�.

2. Initialize variables at the start of an iteration algorithm for
solving the damage evolution problem.

• Assume that the starting value of the PDCS rotation ten-
sor �Qij�n+1

0 = �Qij�n.
• Evaluate the starting value of the damage function

�Fn+1� �0= 1
2 �eij� �n+1�Pijkl� �n+1�ekl� �n+1−�n�.

• If �Fn+1� �0
0, there is no additional damage. In this case,
proceed to step 7 with unchanged secant stiffness tensor
�Eijkl�n+1= �Eijkl�n.

3. For the Ith iteration, damage evolution takes place if
1
2 �eij� �n+1�Pijkl� �n+1�ekl� �n+1−�n��0. In this case, determine
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Fig. 10 Comparison of macroscopic stress-strain curve ob-
tained using HCDM and HMM for a 3D RVE with a cylindrical
fiber „Fig. 2„a…… for load cases „a… L1, „b… L2, and „c… L3
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• ��n+1� �I= 1
2 �eij� �n+1��Pijkl� �n+1�I�ekl� �n+1

• Wd by inverting the ��-Wd relation in Eq. �34� as

��Wd�n+1�I =
1

b2
tan−1� 1

b1
� ��n+1� �I − b0

�fn+1�I�I1,J2,J3�
− 1��

�42�

4. Using the backward Euler method to integrate Ẇd�, deter-
mine

��n+1�I = �n +
2���Wd�n+1�I − �Wd�n�

�eij�Pijkl� ekl� �n+1
I �43�

5. Update the secant stiffness using the relation

�Eijkl� �n+1
I = �Eijkl� �n + ��n+1

I − �n��Pijkl
I �n+1 �44�

6. Determine the PDCS rotation matrix �Qij�n+1
I from the

eigenvectors of �Dij�n+1
I , corresponding to the updated secant

stiffness �Eijkl�n+1
I using the procedure in Sec. 3.2. If conver-

gence in the rotation matrix is achieved, i.e.,

max���Qij�n+1�I − ��Qij�n+1�I−1� 
 TOL, ∀ i, j = 1,2,3

then proceed to step 7. Otherwise, return to step 3 and con-
tinue the iteration.

7. Update macroscopic stresses with the converged value of the
secant stiffness matrix as

��ij�n+1 = �Eijkl�n+1
I �ekl�n+1 �45�

4 Numerical Examples for Validating the HCDM
Model

A few numerical simulations are conducted in this section for
validating the orthotropic 3D HCDM model. The HCDM results
are compared with homogenized micromechanics �HMM� solu-
tions of the RVE. The HMM model is obtained by homogenizing
the micromechanical response of the RVE using the asymptotic
homogenization methods discussed in Ref. �16,22�. The macro-
scopic FEM implementing the HCDM model for its constitutive
relations consists of a single eight-noded quadrilateral element.
Five different 3D and 2D RVEs are considered for development of
the HCDM model using micromechanics.

�a� Unidirectional 3D uniform composite microstructure,
where RVE is a unit cell containing a single cylindrical
fiber of volume fraction 20%. This is shown in Fig. 2�a�.

�b� Unidirectional 3D uniform composite microstructure,
where RVE is a unit cell containing a single fiber of an
elliptical cross section, as shown in Fig. 2�b�. The volume
fraction is 20% and the aspect ratio is a /b=2.

�c� Unidirectional 3D composite microstructure, where RVE
contains two nonuniformly placed cylindrical fibers, as
shown in Fig. 2�c�. The fiber volume fraction is 20%.

�d� Cross-ply 3D composite microstructure with its RVE
containing two cylindrical fibers of volume fraction 20%
oriented at 90 deg with respect to each other. This is
shown in Fig. 2�d�.

�e� Random 2D composite microstructure, as shown in Fig.
1. The RVE contains 20 circular fibers of volume fraction
21.78%. The periodic domain or the RVE is generated by
repeating the core fiber configuration periodically and
tessellating the overall domain as developed in Ref. �35�.
This leads to an aggregate of Voronoi cells, constituting
the RVE.

The material properties of the elastic matrix are Em=4.6 GPa
and �m=0.4, and the elastic fiber have Ec=210 GPa and �c=0.3.
The cohesive zone properties for the interface are �c=5.0
�10−5 m, �e=20�10−4 m, and �m=0.02 GPa.

Micromechanical analyses of the RVEs are conducted by en-
forcing periodic displacement boundary conditions and imposing
the macroscopic strain fields in the entire RVE. Both proportional
and nonproportional macroscopic strain loading conditions are ap-
plied as follows:

1. L1, proportional uniaxial tension loading: e11�0, all other
eij =0 for the entire loading process. This is taken as the
reference loading path.

2. L2, proportional combined tension/shear loading: e11�0,
e22�0, e12�0, all other eij =0 for the entire loading process.

3. L3, nonproportional loading: e11�0, all other eij =0
�uniaxial tension in the first half of the loading�; e11�0,
e12�0, all other eij =0 �combined tension/shear in the sec-
ond half of the loading�

Contour plots of the microscopic stress in the different 3D RVEs,
subjected to uniaxial tension in the x1 direction, are shown in Figs.
15�a�–15�d�.

The various parameters in the HCDM model are calibrated for
the RVEs �a�–�e� following the procedure outlined in Sec. 3.3. The
constants A ,B ,C ,F ,G , . . . ,S in Eq. �33� for the strain invariants
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Fig. 11 Comparison of macroscopic stress-strain curve ob-
tained using HCDM and HMM for RVE with an elliptical fiber
„Fig. 2„b…… for load cases „a… L1, „b… L2, and „c… L3
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are evaluated for all five RVEs and are reported in Table 1. The
constants exhibit symmetry with respect to x1 and x2 directions for
the RVE with a cylindrical fiber, and with respect to x1 and x3
directions for the RVE with two perpendicular fibers. No particu-
lar symmetry is observed for the other RVEs. Since the calibrated
constants in the expressions for �� and Pijkl� are numerous, only a
few representative values are given for the RVE with a single
cylindrical fiber �a�. These are b0=0.1E−6, b1=12.44, b2
=0.44E5, a0=0.42, a1=3.08, a2=2.44, and a3=74.2. For P1111� ,
some of the constants are c0

1111=−1.16, c1
1111=−0.144, c2

1111

=−0.615, and c3
1111=−0.144.

Figures 10–14 compare the macroscopic stress-strain plots ob-
tained using HCDM with those by homogenizing the results of
micromechanical RVE analyses for the three load cases consid-
ered. The excellent match in most cases corroborates the satisfac-
tory performance of the HCDM model. An important observation
from these results is the sensitivity of the HCDM behavior to the
microstructural architecture in response to different loads. The
RVE �a� subjected to loading �L1� shows rapid material degrada-
tion with increasing strain as the interface undergoes debonding in
Fig. 10�a�. The stiffness stabilizes at a strain of 0.0012 when the

interface debonds completely. Similar trends are seen for the com-
bined loading �L2� in Fig. 10�b�, with material degradation fol-
lowed by constant stiffness corresponding to a locked state. For
the nonproportional loading �L3� in Fig. 10�c�, the PDCS repre-
sentation results in a remarkable improvement of accuracy when
compared to results in Fig. 4. The stress �11 in this case keeps
reducing in the second half of the loading. For the RVE �b� with
the elliptical fiber, stress concentration at the major axis, as shown
in Fig. 15�b�, causes uneven debonding of the interface. This re-
sults in different behaviors in different directions even for uniaxial
tension, as shown in Figs. 11�a�–11�c�.

The debonded configuration of the RVE �c� with two parallel
fibers in Fig. 15�c� shows that nonuniform spacing of fibers causes
one side of each fiber to debond more than the other. The stress-
strain plots in Figs. 12�a�–12�c� for various loading paths show
more rapid degradation than that for RVE �a�. Figures 13�a�–13�c�
show macroscopic stress-strain plots for the cross-ply composite
RVE �d�, shown in Fig. 2�d�. The �11 component of stress shows
insignificant amount of softening for all three loading cases. This
is because for a tensile load in the x1 direction, the major share of
the load is supported by the fiber in the x1 direction. This fiber
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Fig. 12 Comparison of macroscopic stress-strain curve ob-
tained using HCDM and HMM for RVE with two parallel fibers
„Fig. 2„c…… for load cases „a… L1, „b… L2, and „c… L3
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Fig. 13 Comparison of macroscopic stress-strain curve ob-
tained using HCDM and HMM for RVE with two perpendicular
fibers „Fig. 2„d…… for load cases „a… L1, „b… L2, and „c… L3

031011-12 / Vol. 75, MAY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



continues to support the tensile load even after debonding occurs
in this fiber. Degradation of the elastic stiffness in the x1 direction
occurs mainly due to debonding at the interface of the fiber in the
x3 direction, which is not significant. On the other hand, the �22
plot for the uniaxial tension �L1� case in Fig. 13�a� shows the
effect of considerable damage. The initial elastic response is fol-
lowed by degradation before stabilizing at a lower value of stiff-
ness. There are two phases of rapid degradation corresponding to
debonding of fibers in the x3 and x1 directions, respectively. The
first is due to rapid separation of the fiber in the x3 direction,
whose axis is perpendicular to the loading direction �see Fig.
15�d��. Due to symmetry, degradation in the x2 direction is equally
affected by debonding of fibers in the x1 and x3 directions. When
the RVE is subjected to tensile strain in the x1 direction, imposed
periodicity conditions in the three orthogonal directions causes the
material to experience tension in these directions. This is a con-
sequence of Poisson’s effect and the constraint to produce zero
macroscopic strains in the x2 and x3 directions, which leads to
interfacial separation of the fiber in x3 direction. This second rapid
degradation is due to this effect. Finally, when the two interfaces

have debonded completely, the stress response in the x2 direction
corresponds to that of a RVE containing two voids. A similar
behavior is also observed for the combined loading �L2� shown in
Fig. 13�b�. The shear stress is seen to be affected more promi-
nently by the debonding of fiber in the x1 direction. Figures
14�a�–14�c� show good agreement between the response of
HCDM model and the HMM for the 2D multiple fiber RVE with
random fiber distribution. The material degradation in this case is
not as rapid as with the RVE �a�.

The error in stress predicted by HCDM is attributed to the error
in the functional representation of ���Wd� and Pijkl� , and the as-
sumption of orthotropy. It is evident from the examples discussed
that the material degradation and, consequently, the variation of
damage parameters depend on the shape, distribution, and orien-
tation of the fibers in the RVE. This emphasizes the need for
comprehensive 3D micromechanics based continuum damage
model for use in macroscopic analysis modules.

5 Conclusions
An accurate and computationally efficient 3D HCDM is pre-

sented in this paper for fiber reinforced composites undergoing
interfacial debonding. An orthotropic damage model in the PDCS
using fourth order damage tensor, which characterizes the stiff-
ness as an internal variable, is found to be appropriate for predict-
ing the damage behavior for a wide range of proportional and
non-proportional loading. An investigation of the effect of loading
history on the orientation of principal damage axes reveals that the
PDCS experiences rotation along a nonproportional macroscopic
strain evolution path. This effect is accounted for by expressing
the evolution laws in PDCS. Functional forms of various damage
parameters ��� , Pijkl� � in terms of the strain invariants I1, J2, and
J3, and damage dissipation energy Wd of the strain tensor, are
developed to express variation of damage variables with the
evolving damage, and are calibrated by performing microme-
chanical RVE analyses for a few imposed strain loads. The func-
tional forms of the parameters overcome the serious limitations of
constant damage parameters that are conventionally assumed in
CDM models. The representation of the CDM in the evolving
PDCS also adds significantly to its versatility to a wide variety of
loading conditions. The orthotropy assumption in the PDCS is
found to yield reasonable accuracy. The model’s robustness is
evident from the good agreement between HCDM and HMM re-
sponse of different RVEs for a variety of loading paths.

The HCDM model developed in this paper is a very helpful tool
for making macroscopic damage predictions once the model has
been calibrated for a given RVE. It can be used as a design tool to
optimize the mechanical properties of structures/components by
considering the variety of microstructural configurations. How-
ever, a different set of calibrated parameters is needed once the
RVE architecture changes. Transferability from one RVE to an-
other would require scaling parameters formed out of geometric
parameters in the microstructure. This is a nontrivial task and is
currently being pursued. Another issue with this model is the as-
sumption of the existence of a RVE, wherein macroscopic vari-
ables are nearly uniform and microscopic periodicity can be as-
sumed. Identification of RVEs can be done by methods described
by the second author in Ref. �36�. However, as shown in Ref. �37�,
the RVE keeps evolving in size with the evolution of microscopic
damage. Continuous adjustments are needed in the model for their
applicability to problems with significant damage. One possible
fix is to invoke a scale transfer for a complete microscopic analy-
sis in regions of high localized damage as conducted in Ref.
�19,22,23�, thereby avoiding the use of CDM in this region. Al-
ternatively, higher order CDMs that account for the growth of the
RVE can be developed. These are topics of ongoing research.
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Fig. 14 Comparison of macroscopic stress-strain curve ob-
tained using HCDM and HMM for RVE with 20 circular fibers
„Fig. 1… for load cases „a… L1, „b… L2, and „c… L3
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The Effects of Vibrations on
Particle Motion in a Viscous
Fluid Cell
The effects of small vibrations on particle motion in a viscous fluid cell have been
investigated experimentally and theoretically. A steel particle was suspended by a thin
wire at the center of a fluid cell, and the cell was vibrated horizontally using an electro-
magnetic actuator and an air bearing stage. The vibration-induced particle amplitude
measurements were performed for different fluid viscosities (58.0 cP and 945 cP), and
cell vibration amplitudes and frequencies. A viscous fluid model was also developed to
predict the vibration-induced particle motion. This model shows the effect of fluid viscos-
ity compared to the inviscid model, which was presented earlier by Hassan et al. (2004,
“The Effects of Vibrations on Particle Motion in an Infinite Fluid Cell,” ASME J. Appl.
Mech., 73(1), pp. 72–78) and validated using data obtained for water. The viscous model
with modified drag coefficients is shown to predict well the particle amplitude data for
the fluid viscosities of 58.5 cP and 945 cP. While there is a resonance frequency corre-
sponding to the particle peak amplitude for oil �58.0 cP�, this phenomenon disappeared
for glycerol �945 cP�. This disappearance of resonance phenomenon is explained by
referring to the theory of mechanical vibrations of a mass-spring-damper system. For the
sinusoidal particle motion in a viscous fluid, the effective drag force has been obtained,
which includes the virtual mass force, drag force proportional to the velocity, and the
Basset or history force terms. �DOI: 10.1115/1.2839658�

Keywords: hydrodynamics, viscosity, particle, vibration, frequency, amplitude

1 Introduction
Advanced materials and new drugs can be produced under mi-

crogravity where sedimentation and buoyancy-induced motion are
suppressed even in systems that contain fluids and solid particles
with different densities. However, many semiconductor and crys-
tal growth experiments conducted in the past aboard the Space
Shuttle and Mir Space Station have yielded unexpected results
possibly due to small amplitude vibrations.

These vibrations called g-jitter exist on the space platforms and
may totally alter the fluid behavior under microgravity, which may
lead to different crystal properties. Recent protein crystal growth
experiments conducted by Gamache et al. �1� have shown that
small vibrations can induce movements of protein crystals, which
in turn can cause significant fluid motions around the growing
crystal. Thus, to improve material processing in space, the effects
of small vibrations on fluid and fluid-particle systems need to be
better understood. To this end, the motion of a solid particle in a
fluid cell filled with a viscous liquid and subjected to small hori-
zontal vibrations has been investigated experimentally and theo-
retically over a wide range of vibration conditions.

In the past, many articles have been published on flow-induced
vibrations of solid structures. However, the reverse situation of
vibration-induced particle motion in a viscous fluid has not been
fully explored and understood for different particle Reynolds
number ranges. Some theoretical and experimental studies exist
on fluid flow for different vibration frequencies; so, those results
would be utilized in this work.

Stokes �2�, Basset �3�, and Boussinesq �4� derived expressions
for the hydrodynamic force exerted on a sphere, which is sub-

jected to harmonic and arbitrary motions, respectively. They omit-
ted the inertia terms �nonlinear terms� in order to simplify the
Navier–Stokes equations. Oseen �5� linearized the nonlinear terms
up to the first order and showed that the ratio of the inertial to the
viscous terms cannot be negligible at distances �1/Re� as assumed
by Stokes for a steady creeping flow no matter how small the
particle diameter is. Later, Proudman and Pearson �6� showed the
inaccuracy of Oseen’s equations near the edge of the particle, and
introduced solutions near and far from the body, and matched
them asymptotically.

Odar �7� dealt with the forces acting on a sphere accelerating in
an otherwise quiet and viscous fluid. He stated that the general
situations in which both fluid and body move are difficult to study,
since the motion of the fluid could be curved and unsteady. Other
important studies performed to determine the terminal velocities
of a spherical particle in an oscillating liquid include those by
Baird et al. �8�, Ikeda �9�, Jameson and Davidson �10�, and Tun-
stall et al. �11�. Molinier et al. �12� dealt with the motion of a
sphere in a column where there was a circulation of a viscous oil.
An important reference that summarizes the works of above au-
thors and others on the motion of drops, bubbles, and particles up
to 1978 is by Clift et al. �13�. It covers flows at low and high
particle Reynolds numbers, the drag force induced, and the wall
effects on the particle motion.

Feinman �14� studied experimentally the effect of viscosity on
the terminal velocity of a particle in a sinusoidal velocity field. He
neglected the existence of a Basset force �or history force� given
by Eq. �1�,

FB = 6R0
3����F�1/2�

0

t
��t��

�t − t��1/2dt� �1�

where the Basset force on an oscillating particle results from the
past motion of the particle. One can see from Eq. �1� that the
Basset force is an unsteady force, which depends on the particle’s
past acceleration relative to the fluid, ��t�, fluid viscosity and

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received November 29, 2005; final
manuscript received November 13, 2007; published online May 1, 2008. Review
conducted by Igor Mezic.

Journal of Applied Mechanics MAY 2008, Vol. 75 / 031012-1Copyright © 2008 by ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



density, and particle radius. For highly viscous fluids and particles
of large diameters, the Basset force becomes large at high accel-
eration rates.

Feinman’s experiments �14� were based on Houghton’s analysis
�15� of the particle trajectories given by the Mathieu equation. He
derived the minimum frequency required for particle levitation
and stability. The range of viscosities tested in Feinman’s experi-
ments was, however, quite limited �1–7 cP�, which made his pre-
dictions for the virtual mass coefficient applicable only to his
experiment. Houghton �15� analyzed the nonlinear drag �Newton’s
law� on free particles in a sinusoidal velocity field leading to the
Mathieu equation. He found that stable particle trajectories may
occur in certain ranges of sinusoidal velocity amplitude and fre-
quency.

Mei et al. �16� used a finite-difference method to numerically
calculate the unsteady drag on a stationary sphere with small fluc-
tuations in the freestream velocity at finite Reynolds numbers.
Their results indicated that the drag force would increase linearly
with frequency � when the frequency is very low and asymptoti-
cally as the square root of frequency �� at high frequencies. The
latter behavior of the drag force is similar to that of the Basset
force. This drag force dependence on frequency suggests that the
Basset force is not constant at all frequencies. Their approach in
analyzing the total drag force will be used later in this paper to
justify the use of an equivalent drag coefficient.

Maxey and Riley �17� developed an equation of motion for a
small rigid sphere in a nonuniform flow. Their analysis was based
on the errors in Tchen’s equation �18�. Even though no assumption
was made, their equation cannot be simplified in order to be ap-
plied to predict experimental data. Lovalenti and Brady �19� de-
rived the hydrodynamic force acting on a rigid particle in very
low Reynolds number flows and found that the expression for the
hydrodynamic force is not simply an additive combination of the
results obtained from unsteady Stokes’ and steady Oseen’s equa-
tions. Recently, Abbad and Souhar �20� investigated the history
force acting on oscillating fluid spheres in a quiescent viscous
liquid at low Reynolds numbers. Unfortunately, no analytical ex-
pression was developed for the particle amplitude.

Coimbra and Rangel �21� derived an analytical model for the
periodic motion of a small particle in a viscous fluid. In their
paper, relative scaling of the virtual mass, Stokes drag, and history
forces was presented. They showed that when the scaling param-
eter S is near unity, the magnitude of the history force would be
approximately three times larger than those of the virtual mass
and the Stokes drag forces. Their results will be utilized later in
this paper to interpret the effect of the viscosity on the importance
of the Basset force in highly viscous fluids.

Our recent papers related to vibration-induced particle motion
in an inviscid fluid have experimentally and theoretically exam-
ined an infinitely large cell �Hassan et al. �22�� and a semi-infinite
cell where wall effects were present �Hassan et al. �23��. In both
papers, theoretical models were derived for the particle amplitude
Ap, assuming an inviscid fluid and irrotational flow, and shown to
predict well the experimental data obtained using fluid cells filled
with water. In both experiments, a steel particle attached to a thin
wire was immersed in a water-filled cell, which was subjected to
horizontal vibrations of different amplitudes and frequencies. Us-
ing an image analysis technique, the particle amplitude Ap, a half
of the peak-to-peak amplitude, was accurately determined. The
fluid cell was sufficiently large in size compared to the particle so
that it could be regarded as an infinite cell �Hassan et al. �22��.
The semi-infinite cell was achieved by inserting one or more flat
plates into the cell and narrowing the distance between the particle
and the nearest vertical cell wall �Hassan et al. �23��.

For both infinite and semi-infinite cells, a resonance phenom-
enon was detected experimentally and predicted theoretically by
the inviscid models. At the resonance frequency, the particle am-
plitude would increase to an infinite value, and a change would
occur in the phase relationship between the particle and cell mo-

tions. At sufficiently high vibration frequencies, the particle am-
plitude asymptotically reached a constant value independent of the
cell vibration frequency, and the asymptotic particle amplitudes
were well predicted by the inviscid models. A further inviscid
analysis was performed by Hassan et al. �24� to show the exis-
tence of a vibration-induced hydrodynamic force, which causes
the particle to drift toward the nearest wall. The theoretical pre-
dictions of the particle drift compared well with the experimental
data obtained in a fluid cell filled with water.

Although the viscosity effect on the particle motion was deter-
mined to be small for water since the inviscid model could predict
the experimental data rather well, the particle motion is expected
to be strongly damped in a highly viscous fluid. To quantitatively
determine the effect of fluid viscosity on the particle amplitude
and resonance phenomenon observed in water-filled cell experi-
ments, new experiments have been carried out using mineral oil
�58 cP� and glycerol �945 cP�.

A viscous model has also been developed based on an analogy
with a mechanical vibration system, and the viscous model pre-
dictions will be compared with the new experimental data. The
mechanical representation consists of a mass attached to a
damper-spring system having certain values of stiffness and
damping coefficients. It is also known from the theory of vibra-
tions �25� that as the damping coefficient increases, the resonance
phenomenon disappears completely. In addition to investigating
the particle amplitude in a viscous fluid cell, which is subjected to
external vibrations, the questions to be addressed in this paper
included the suppression of a resonance phenomenon in the par-
ticle motion similar to a highly damped mass-spring system.

2 Experimental Apparatus and Procedure
The experimental apparatus used consisted of a test section, a

personal computer �PC�-controlled linear stage, and a video
camera/recording system as shown in Fig. 1 and described in de-
tail elsewhere �22–24�. Each of the major components is briefly
described below.

A computer-controlled translation stage was used to vibrate the
fluid cell with submicron resolution and repeatability. It was con-
trolled to move horizontally with a specified amplitude and fre-
quency in a near sinusoidal manner. The test section was a liquid-
filled transparent container 110 mm in height and 70 mm in width
and length, and made of smooth, polished acrylic plates. A thin
platinum wire of 125 �m diameter and 70 mm wire length was
used to suspend a spherical particle at the center of the fluid cell.
The effects of the wire diameter as well as the wire length had
been studied previously by Hassan et al. �22�.

Fig. 1 Experimental setup
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Only a spherical steel particle ��S=7.83 kg /cm3� of diameter
d=12.7 mm has been used in the experiments. The liquid used to
fill the fluid cell was viscous oils of different viscosities, 58.0 cP
and 945 cP. A digital color video camera �Hitachi D.S.P VK
C-370� with an interchangeable lens was used to capture the par-
ticle motion with sufficient magnification and proper illumination
from the rear using a light source placed far from the fluid cell to
avoid any heating effect. The edge of the particle was captured at
a rate of 30 frames per second for at least 2 min, and the shutter
speed was set at 1 /1000 s−1 to obtain sharp images. The video
data were recorded on a mini-DV videocassette by means of a
digital video cassette recorder �VCR� �JVC No. AG-7355�. The
particle edges recorded in a video tape were analyzed using an
image analysis program. In total, 255 consecutive frames of par-
ticle edge images captured over 8.64 s were analyzed to obtain the
particle amplitude and frequency data.

In conducting the experiments, the vibration frequency, f, was
first set at 0.25 Hz and the amplitude was changed from 0.5 mm
to 2.0 mm over small increments. Then, the frequency was in-
creased by 0.25 Hz up to 7.0 Hz, and the experiment was run
again with the same amplitudes as before for 0.25 Hz. At frequen-
cies above 4.0 Hz, the cell amplitude was changed from 0.5 mm
to only 1.0 mm, due to the limitation of the linear stage at high
frequencies. The experiments were also conducted such that at a
fixed cell vibration amplitude of 0.5 mm, the cell vibration fre-
quency was increased from 0.25 Hz to 7.0 Hz. After reaching
7.0 Hz, the previous procedure was also repeated with different
imposed cell amplitudes.

The phase of the particle motion with respect to the cell motion
was identified by fixing a rod with a sharp marker on the vibration
isolation table, and vibrating the fluid cell while the particle edge
and the marker position were recorded simultaneously. This way,
the direction and speed of the cell motion could be detected in the
video image with respect to the fixed marker rod. A pixel to mi-
cron conversion factor was obtained by lowering a platinum wire
of known diameter to the bottom of the fluid cell and recording its
image. Then, by using the same image analysis program, the wire
diameter in pixels was calculated and the conversion factor was
computed.

3 Theoretical Analysis of the Particle Motion in a Vis-
cous Fluid in an Infinite Cell

In this section, an approximate theoretical model will be devel-
oped to predict the particle amplitude in viscous fluids. The sys-
tem modeled consists of a particle suspended by a thin wire in a
fluid cell much larger than the particle and horizontally vibrated in

a sinusoidal manner. The dimensionless amplitude Ãpi of a particle
oscillating in a large fluid cell filled with an inviscid fluid and
vibrated sinusoidally with a dimensionless amplitude of ã in one
direction was obtained by Hassan et al. �22� as

Ãpi =
�̃ã

�̃ − 1
�2�

where the subscript i stands for the inviscid fluid, and �̃ and �̃ are
given by

�̃ =
2��̃ − 1�
2�̃ + 1

�3�

�̃ =
�̃

�̃2 �4�

Here, the dimensionless parameters for the fluid density, wire
length, cell vibration frequency, particle and cell amplitudes, par-
ticle displacement from the equilibrium position, and time are
defined as follows:

�̃ =
�S

�L
, L̃ =

L

R0
, �̃ =

�

�g/L
, Ãpv =

Apv

R0
,

ã =
a

R0
, X̃p =

Xp

R0
, t̃ = �t

For a particle moving in a cell filled with a viscous fluid, an
additional term has to be added to the inviscid model to take into
account the viscous drag force. The dimensionless equation of
motion for a particle in a viscous fluid is then given by

X̃
¨

p + �̃X̃
˙

pX̃
˙

p + �̃X̃p = �̃ sin t̃ �5�

where X̃
¨

p and X̃
˙

p are the acceleration and velocity of the vibrating
particle in the cell frame of reference. The second term on the left
hand side of Eq. �5� represents the damping of particle motion by
viscous drag, and the parameter �̃ is given by

�̃ =
3Cd

8��̃ + 0.5�
�6�

where Cd is the drag coefficient. The third term in Eq. �5� repre-
sents the restoring force due to gravity.

For the present experiments involving an oscillating particle in
a viscous fluid, the particle Reynolds number ranged from 0.001
to 0.5. Hence, it is possible to linearize Eq. �5� for slow particle
motions or low particle Reynolds numbers using

Cd =
k

Re
=

k�

�L�Ẋp�d
�7�

where k is a constant in the drag coefficient usually taken to be 24
for a spherical particle in steady flow when Re is small �	1�.
Equation �5� includes the added mass force but not the Basset
force. In this work, the effect of the Basset force will be approxi-
mately accounted for in the drag force term by modifying the drag
coefficient Cd as described below.

From the numerical results of Mei et al. �16�, it was found that
the fluctuating part of the unsteady drag force can be decomposed
into three major components: a quasisteady component, which is a
nonlinear function of Re, an unsteady component due to the added
mass and the fluid acceleration, and finally the modified Basset
force, which increases with frequency and decreases as Re in-
creases. For the case of a particle in an oscillatory motion with an

instantaneous speed, Ẋp, and the direction of motion changing
over each half-period, the drag coefficient should be greater than
the steady motion case of Eq. �7� with k=24. Hence, the value of
k is assumed to increase above 24 for more viscous fluids, larger
particles, and at higher vibration frequencies.

Substituting Eqs. �7� and �6� into �5�, the equation of particle
motion can be given in dimensionless form by

X̃
¨

p + 
̃X̃
˙

p + �̃X̃p = �̃ã sin t̃ �8�

where the viscous damping coefficient 
̃ is given by


̃ =
3k�

2d2�2�S + �L��
�9�

A particular solution has the same form as the right hand side of
Eq. �5� �i.e., a sinusoidal motion� but with a phase angle due to the
damping term. Since the periodic motion is obtained experimen-
tally by running the system long enough until the transient motion
has disappeared, this solution can be written in complex form as

X̃
¯

p = Ãpvei�t̃−�� �10�

where the dimensionless particle amplitude Ãpv and the phase
angle are given, respectively, by
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Ãpv =
�̃ã

���̃ − 1�2 + 
̃2
�11�

tan � =

̃

�̃ − 1
�12�

The subscript v indicates the viscous fluids. For an inviscid fluid
��=0�, the particle amplitude in Eq. �11� reduces to Eq. �2�.

From Eq. �11�, in microgravity �g→0�, the particle amplitude

reaches an asymptotic value Ãpv→ Ãpv,0g, which can be expressed
as follows by using Eq. �2� for �̃→0 as g→0 and �̃→�:

Ãpv,0g =
− �̃ã

�1 + 
̃2
�13�

A comparison of Eqs. �11� and �2� shows that the viscous
damping would reduce the particle amplitude, but its effect would
vary with the viscosity, particle diameter, and drag coefficient pa-
rameter k. Unlike the inviscid model, the viscous model does not
predict the existence of a resonance phenomenon since the de-
nominator of Eq. �11� can never become zero. However, as shown
later, a maximum particle amplitude can be reached at a certain
frequency. The viscous model prediction of the particle amplitude
given by Eq. �11� will be quantitatively compared against the
experimental data in the next section.

The phase angle given by Eq. �12� varies with the viscosity,
particle diameter, drag coefficient parameter k, and vibration fre-
quency. This is in contrast with the inviscid model prediction,

which only indicated a phase difference of either zero or � /2 rad
depending on whether the vibration frequency is below or above
the resonance frequency. The phase angle is predicted to also vary
with the wire length, particle, and fluid densities. The tangent of
the phase angle increases with the fluid viscosity, but decreases
with the square of the particle diameter. The particle amplitude is
still proportional to the cell amplitude, but in contrast to the in-
viscid model, the amplitude depends on the particle diameter. The
validity of the phase angle relation for a vibrating system, as given
by Eq. �12�, was qualitatively confirmed experimentally for fluids
of different viscosities.

4 Results and Discussion
Typical particle responses to the external vibration are shown in

Fig. 2 for imposed cell amplitudes of 8.0 mm, 4.0 mm, 2.0 mm,
and 1.0 mm and vibration frequencies ranging from 1.0 Hz to
3.0 Hz. The wire length was 70.0 mm. The instantaneous particle
position data obtained from consecutive particle images for differ-
ent fluid viscosities are plotted as a function of time. The data
clearly indicate nearly sinusoidal motions of the particle having
the same frequency as that of the cell vibration. From these data,
the particle amplitude, Apv, was obtained by dividing in half the
difference between the averages of the maximum and minimum
positions.

Figures 3 and 4 compare the measured and predicted variations
of the dimensionless particle amplitude with the cell vibration
frequency for a cell amplitude of 1.0 mm and wire length of
70.0 mm �=L−R0�. The viscous oil used was a mineral oil of
58 cP viscosity. Although no resonance phenomenon was pre-

Fig. 2 Instantaneous displacement of a particle for different viscosities and vibration
frequencies: „a… oil „58.0 cP, f=1.0 Hz, a=1.0 mm…; „b… oil „58.0 cP, f=2.0 Hz, a=1.0 mm…;
„c… glycerol „945 cP, f=0.75 Hz, a=8.0 mm…, and „d… glycerol „945 cP, f=3.0 Hz, a
=1.0 mm…
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dicted to occur for a particle oscillating in viscous fluids, the
particle amplitude reached a maximum value at a dimensionless
frequency of 0.13, as shown in Figs. 3 and 4. If the fluid were
inviscid, the dimensionless resonance frequency predicted by the
inviscid model would be 0.15.

Figures 3 and 4 show that with a constant value of k equal to 24
in the drag coefficient equation, the viscous model predictions are
nearly identical with those of the inviscid model, and both show
good agreement with the experimental data for dimensionless vi-
bration frequencies below 0.084 and above 0.264. However, be-
tween these dimensionless frequencies, both the present viscous
model with k=24 and inviscid model significantly overpredicted
the measured particle amplitudes. This is due to the neglect of
hydrodynamic forces such as the Basset force, which are expected
to become significant as the particle amplitude and acceleration
relative to the surrounding fluid increase. This inadequacy of the
steady drag coefficient in the viscous model is consistent with the
effect of the Basset force discussed by Mei et al. �16� and by the
values of Coimbra and Rangel’s �21� scaling parameter S between
0.2 and 1 indicating a large effect of the Basset force in harmonic
motions.

If larger values of k are used in the drag coefficient equation to
approximately account for the effect of the Basset force, the
present viscous model can predict the measured particle ampli-
tudes for all the cell vibration frequencies covered in the experi-
ments, as shown in Figs. 3 and 4. The values of k that could
predict the data at dimensionless frequencies of 0.11–0.13 and
0.17–0.35 were 115 and 190, respectively. A higher value of k was
needed at higher vibration frequencies, because the particle accel-

eration relative to the surrounding fluid and the Basset force in-
creased with the vibration frequency at a constant cell amplitude.

As the liquid viscosity was further increased to 945 cP �glyc-
erol�, there was a clear deviation of the theoretical predictions
made with k=24 from the experimental values as shown in Fig. 5
at almost all the dimensionless vibration frequencies tested. Only
for the lowest values of �̃	0.044, the value of k=24 could be
used to well predict the experimental data. The differences be-
tween the experimental results and theoretical predictions for �̃
0.044 diminished with an increase in the value of k from the
steady drag value of k=24 to k=55, which yielded good agree-
ment between the viscous model predictions and glycerol
�945 cP� data. However, this value of k=55 is much smaller than
the optimum values �115 and 190� found for the mineral oil
�58 cP�, because of the smaller effect of the Basset force experi-
enced by the particle due to generally smaller particle amplitudes
and accelerations in glycerol.

For sufficiently high dimensionless vibration frequencies, the
dimensionless particle amplitude is theoretically predicted from
Eq. �11� to reach a constant value equal to

Ãpv� = �̃ã �14�
which is independent of the fluid viscosity and the vibration fre-
quency. The particle amplitude data agreed well with the predic-
tions of Eq. �14� as shown in Fig. 4 for the mineral oil �58.0 cP�;
however, for glycerol �945 cP�, the particle amplitude did not
quite reach the asymptotic value even at the highest dimensionless
vibration frequency of �̃=0.62 tested in the present work. The
dimensionless particle amplitude of slightly greater than 0.1 in
glycerol was 23% lower than the dimensionless amplitude of
0.123 predicted by Eq. �14� and experimentally obtained for the
same particle in water by Hassan et al. �22�.

The dimensionless particle amplitude predicted by Eq. �11� can
be shown to reach a maximum value at a certain dimensionless
vibration frequency �̃m,

�̃m =� �̃4

�̃2 − 2�̃2
�15�

where �̃ is the dimensionless resonance frequency for a particle in
an inviscid fluid given by

�̃ = ��̄ =�2��̃ − 1�
2�̃ + 1

�16�

and

�̃2 = � 3k�

8d2��S + 0.5�L�	
2�L

g
	 �17�

Fig. 3 Experimental and theoretical variations of particle am-
plitude with cell vibration frequency; cell amplitude: 1.0 mm,
steel particle diameter: 12.7 mm

Fig. 4 Experimental and theoretical variations of particle am-
plitude with dimensionless vibration frequency; cell amplitude:
1.0 mm; steel particle diameter: 12.7 mm

Fig. 5 Experimental and theoretical variations of particle am-
plitude with dimensionless cell frequency for glycerol oil
„945 cP… and for different values of k; cell amplitude: 1.0 mm
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The dimensionless resonance frequency �̃ for an inviscid fluid
derived by Hassan et al. �22� is recovered when the viscosity is set
to zero in Eq. �17� in the viscous model. Furthermore, Eq. �15�
indicates that the dimensionless vibration frequency �̃m is always

greater than the dimensionless resonance frequency �̃ for an invis-
cid fluid provided that

�̃ 	
�̃

�2
�18�

A clear increase in �̃m to above the dimensionless resonance fre-

quency �̃ can be seen in Fig. 5.

Substituting the values of �̃ and �̃ from Eq. �17� into Eq. �18�
leads to the following inequality relating the fluid viscosity with
the fluid density, wire length, gravitational acceleration, particle
diameter, and density for a given value of constant k in the drag
coefficient:

� 	
4d2

3k
�2
��S + 0.5�L���S − �L�

g

L
� �19�

If Eq. �19� is not satisfied, there would be no resonance phe-
nomenon in which the particle amplitude becomes infinite. For the
case of a steel particle of 12.7 mm diameter immersed in a fluid
cell filled with glycerol �945 cP�, the inequality given by Eq. �19�
is satisfied for k=24, and Eqs. �15�–�17� with k=24 predict the
maximum dimensionless particle amplitude to occur at a dimen-
sionless vibration frequency of 0.352. But, this prediction does not
agree with the experimental data, as shown in Fig. 5. In fact, the
particle amplitude data showed no peak at any frequency. Since
the value of k=24 accounts for only the steady viscous drag but
not the Basset force which becomes more dominant for higher
viscosity and particle accelerations as shown in Figs. 3–5, the
value of k needed to be increased to 55 in order to give better
predictions of the particle amplitude data as discussed earlier.
With this value of k=55, Eq. �19� is not satisfied and the viscous
theory predicts the absence of a resonance phenomenon as shown
by the experimental data.

5 Conclusion
A study of vibration-induced particle and fluid motion has been

conducted theoretically and experimentally. A theoretical model of
a particle suspended in a viscous fluid cell by a thin wire was
developed to predict the vibration-induced particle motion. A se-
ries of experiments were conducted using a steel particle in a
fluid-filled rectangular container under different vibration condi-
tions. Compared to the inviscid theory developed previously by
Hassan et al. �22�, the viscous theory predicted that the amplitude
of a particle oscillating in a viscous fluid would additionally de-
pend on the fluid viscosity and particle diameter.

The viscous theory was able to predict the experimentally mea-
sured amplitudes of the steel particle for a moderately viscous
mineral oil �58.0 cP� and highly viscous glycerol �945 cP�; how-
ever, the drag coefficient had to be increased for large particle
amplitudes and highly viscous fluids to account for additional hy-
drodynamic forces such as the Basset force. Further experiments
using other viscous fluids and particles are needed to develop a
correlation for the modified drag coefficient by understanding its
dependence on fluid and particle properties as well as the cell
vibration frequency.

The resonance phenomenon was found to exist for a moderately
viscous mineral oil �58.0 cP� but disappear for highly viscous
glycerol �945 cP�, similar to a mass-spring-damper system with
different damping coefficients.
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Nomenclature
a � cell vibration amplitude, m

Ap � particle amplitude in the cell frame of refer-
ence, m

Cd � drag coefficient
d � particle diameter, m

FB � Basset force, N
f � vibration frequency, Hz
g � gravitational acceleration, m /s2

k � constant in a drag coefficient
L � distance from the wire attachment point to the

center of mass of the particle, m
Re � Reynolds number
R0 � particle radius, m
S � scaling number �=R0

2� /9��
t � time, s

Xp � horizontal displacement of the particle with
respect to the cell, m

��t� � relative acceleration of the particle with respect
to the fluid, m /s2

� � dynamic liquid viscosity, kg/m s
� � phase angle, rad
� � kinematic liquid viscosity, m2 /s

�L � liquid density, kg /m3

�S � particle density, kg /m3

� � cell vibration frequency �=2�f�, rad/s

Subscripts
F � fluid
L � liquid
S � solid

Superscript
� � dimensionless parameter
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Dynamic Biaxial Plastic Buckling
of Circular Shells
Of particular interest is the experimental study of the complex dynamic plastic buckling
of circular metallic shells and their energy absorption capacity. Initially proposed by
Baleh and Abdul-Latif (2006), “Quasi-Stalic Biaxial Plastic Buckling of Tubular Struc-
tures used as an Energy Absorber,” ASME J. Appl. Mech., 74, pp. 638–635, the novel
idea, which aims to enhance the strength properties of materials, is extended for studying
the biaxial plastic dynamic buckling behavior of circular shells. It can be assumed that
changes in local deformation mechanisms, which reflect this enhancement in the strength
properties, are mainly governed by the loading path complexity. The question of whether
the performance of dynamic axially crushed tubes could be further improved by using the
developed device (the absorption par compression-torsion plastique (ACTP)) generating
a biaxial loading path (combined compression and torsion) from a uniaxial loading. A
key point emerging from this study is that the structure impact response (i.e., the plastic
flow mechanism and the absorbed energy) is influenced by the loading rate coupled with
the biaxial loading complexity. In this study, three different metallic circular shells made
from copper, aluminum, and mild steel, having distinct geometrical parameters, are ex-
tensively investigated. The obtained results show that the higher the biaxial loading
complexity provided by the ACTP applied, the greater the energy absorbed by the copper,
aluminum, and mild-steel structures. Thus, it is easy to demonstrate that the enhancement
in the energy absorption, notably in the case of aluminum, is higher than 150%, in favor
of the most complicated loading path (i.e., biaxial 45 deg case) compared to the classical
uniaxial case. Moreover, the deformation mode for the tested materials is slightly sensi-
tive to the torsion amplitude in dynamic loading, contrary to the quasistatic one.
�DOI: 10.1115/1.2839686�

Keywords: plastic buckling, combined compression-torsion dynamic loading, energy
absorption

1 Introduction
The collapse of thin-walled circular tubular structures has been

largely used as a passive safety concept already adopted since a
few decades on various vehicles. Hence, several recent studies
conducted under dynamic loading �Refs. �1–13��, reveal that the
crushing process is strongly influenced by structural and material
aspects, strain rate, and inertia effects. These are the most impor-
tant factors in structural crashworthiness design. The dynamic
axial crushing of the cylindrical tubes represents an efficient en-
ergy absorption system, which depends strongly on the above
mentioned key parameters. As a matter of fact, several experimen-
tal and theoretical studies point out that the dynamic plastic buck-
ling is a complex phenomenon due to the coupling between the
inertia effect and plastic properties of the collapsed material. Con-
sequently, the knowledge of the dynamic material phenomena in-
volved in these highly nonlinear dynamic structural problems of
the circular shells is crucial for correctly predicting their mean
collapse loads �Fav� and the corresponding energy absorption ca-
pacities. Three types of plastic instability can be often generated
�4,5,7�: �i� Euler mode �total bending of the structure�, �ii� dy-
namic plastic buckling �buckling over the entire length of the
cylinder with a moderate radial displacement�, and, finally, �iii�
dynamic progressive buckling �successive folding process�. Of
particular interest in this study is the latter buckling type. It takes
place at relatively low impact velocities �lower than 30 m /s�,
where the inertia effects are negligible �14�, and for a ratio of the

mass of the striker and the mass of the specimen higher than 14.
Hence, the plastic flow is always controlled by sequential com-
pression and bending phases, which constitute a complex load/
unload path. Thus, the phenomenon of dynamic buckling proves a
large sensitivity to the loading path, particularly in the plastic zone
�6�.

Recently, many research programs have been focused on the
axial crushing of metallic structures with different sections,
mainly circular and square, using thin-walled high-strength steel
sections �13,15�. Note that the objective of such researches is to
design a cross section, which minimizes the amount of forces
transferred to the integrity of occupants and deforms regularly
during a vehicular crush. Hence, motivated by a high crashwor-
thiness performance, the appropriate determination of the most
important criteria, a superior strength-to-weight ratio and a low
cost-to-weight ratio, is persistently aimed. For different geom-
etries, most of the current developments are based, in general, on
materials of high-performance structures with high strength, high
modulus, low weight, and good toughness properties. Further-
more, a great deal of research and development showed that sev-
eral other solutions such as composite materials and cellular ma-
terials �honeycombs, metallic foams, etc.� �16–18� are considered
to improve the energy absorption capacities.

Being interested in the same type of systems, the present inves-
tigation is an extension of the original idea developed in Ref. �19�,
in which the authors illustrate that the increase in the energy ab-
sorption, under quasi-static biaxial loading path �combined com-
pression and torsion�, attains up to 35% compared to the classical
uniaxial case for the copper circular shells. The developed idea
focuses on the possibility of change in the material strength prop-
erties even under dynamic loading via the loading path complex-
ity concept. In fact, Baleh and Abdul-Latif �19� proposed a spe-
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cific mechanical assembly �the absorption par compression-
torsion plastique �ACTP�� capable of transforming a uniaxial
external loading into a biaxial one. Consequently, the plastic
buckling becomes more and more complicated since a shear com-
ponent is added to these sequential phases of compression and
bending under dynamic loading; i.e., three different strains �com-
pression, bending, and shear� are simultaneously applied with
more complex load/unload conditions. Provoked by the ACTP,
several degrees of complexity related to biaxial loading paths can
be also created within the loaded circular shells during their col-
lapses. Indeed, without intervening on the nature and on the ge-
ometry of the deformed tubes, additional energy absorption is
generally captured.

The principal objective of this experimental work is to study the
effect of the loading rate coupled with the combined biaxial load-
ing condition on the progressive dynamic buckling response for
three metallic structures �made from copper, aluminum, and mild
steel� having different dimensions �i.e., different values of �
=Rm / t and �=Rm /L �Rm: mean radius, L: initial length, and t:
thickness��. Using the ACTP, the behavior of the biaxially crushed
materials is studied, demonstrating mainly the dependence of the
plastic buckling on the specimen geometry, loading path complex-
ity, and its rate. The energy absorption capacity of each system
under different biaxial loading paths is determined and then ana-
lyzed. Moreover, the strength property enhancement phenomenon
of the tested materials is obviously affected by the loading path
complexity �19�. Accordingly, the higher the biaxial loading com-
plexity applied, the greater the energy absorbed in the copper,
aluminum, and mild-steel cases for a given structure. It is note-
worthy that the mild steel, which does not illustrate a noticeable
sensitivity to this biaxial loading path under a quasistatic condi-
tion, shows, however, a reasonable sensitivity to dynamic loading
type and its rate.

The main finding reveals that the maximum enhancement in the
absorbed energy is higher than 150% in the case of aluminum in
favor of the most complicated loading path vis-à-vis a classical
uniaxial case. Contrary to the quasistatic loading, the deformation
mode for the employed materials is slightly sensitive to the torsion
amplitude in the dynamic condition.

2 Experimental Program
In order to improve more the energy absorption capacity, the

solution developed recently via the biaxial loading path has
clearly demonstrated its efficiency. Hence, the proposed device,
the ACTP, has been used to test several metallic circular shells
made from copper, aluminum, and mild steel �19�. As a result of
the loading path complexity, a change in the strength properties of
the materials is obviously observed within the loaded structure,
almost certainly provoked at the dislocation level. In fact, the
crushed material undergoes a highly complicated loading path,
giving simultaneously three different compressive, bending, and
torsional strains.

In this investigation, dynamic biaxial loading paths generated
by the ACTP are therefore considered as a new aspect, which
complicates more and more the biaxial buckling mechanism.
Based on the observation given in Ref. �19�, only the biaxial pro-
portional (integral) loading situation is employed in this study. It
involves a complicated loading condition during which the com-
pression and torsion components are simultaneously applied.

2.1 Tested Materials. In this study, three metallic materials
are investigated. These are commercial hardened copper �tensile
yield stress: 310 MPa�, annealed aluminum alloy �tensile yield
stress: 150 MPa�, and annealed mild steel �tensile yield stress:
220 MPa�, respectively designated according to French standard
as NFA 51120 and AFNOR A506411, A50-451 �6060�, and NFA
49 330 378 504523 NBK122, having an excellent ductility.

The employed nonwelded circular shells have the following
dimensions: Two internal diameters �d� are chosen, 30 mm and

38 mm with 1 mm thickness �t�, leading respectively to the radial
geometrical ratios ��=Rm / t� of 15.5 and 19.5, where Rm is the
mean shell radius. Two longitudinal ratios ��=Rm /L=0.11 and
0.14� are chosen using an initial shell length of 136 mm.

All the specimens are crushed dynamically under compressive
loading. They are not subjected either to heat treatment or to spe-
cial machining operation. The used circular shells with their ratios
are summarized in Table 1.

2.2 Description of the Absorption par Compression-
Torsion Plastique2. The ACTP device is a simple mechanical
assembly, which transforms an external uniaxial compression load
into a biaxial combined compression-torsion one �Fig. 1�. It al-
lows a substantial increase in the energy absorption in comparison
with a uniaxial plastic buckling. An additional resistance in the
deformed shells is needed due principally to the torsional compo-
nent �generated by the ACTP�, in parallel to the compression one.

Moreover, the device can generate several rates of change of
torsional component by means of three distinct propeller inclina-
tion angles of 30 deg, 37 deg, and 45 deg for studying the effect
of this significant parameter on the collapse operation.

The developed device �Fig. 1� is constituted from a tempered
steel hollow interchangeable cylindrical body �1�, on which four
parallel helicoid grooves are machined. These grooves are charac-
terized by an inclination angle. They are intended to receive a
crosspiece �2�, provided with four pivots and to guide it in its
movement of descent by inculcating a rotational movement.
Hence, the two principal parts of this apparatus form a slide-
helicoid connection. This mechanism permits to transform an ini-
tial external load of uniaxial nature into a biaxial combined
compression-torsion one. In order to minimize the friction in the
contact zone between the grooves and the crosspiece �2�, the
crosspiece pivots are equipped with bronze rollers �3�. Since it is
considerably difficult to evaluate the friction effect on the defor-
mation operation, its effect is therefore neglected in this work.

The crushed structure �9� is mutually dependent on the cross-
piece and cylindrical body by means of a mechanical tube ex-
tremities fixation system. For each extremity, the system is made
principally from two hard steel disks �11�. Two half-conical shells
�10� and a clip �13�, over which these conical surfaces are ma-
chined and assembled in opposition attached to the disk �12�,
maintain the necessary tightening pressure in locking both crushed
tube extremities. Therefore, during its biaxial deformation, the
specimen �9� is totally conditioned by the crosspiece in its move-
ments of descent and rotation.

2.3 Impact Apparatus. All the experimental tests are carried
out using a dynamic drop mass bench of a maximum impact ve-
locity of 10 m /s and of a maximum kinetic energy of 2.5 kJ. It is
equipped with a dynamic load cell of 20 tons, a 5000 g acceler-
ometer, and a laser beam displacement transducer �series M5L of
international Bullier� for a measurement bracket of 100 mm.
These instruments are connected to a rapid acquisition chain
�1 MHz�, which ensures the simultaneous recording of these ex-
perimental data: force, acceleration, and displacement.

To assure the synchronization of the acquisition of these essen-
tial data, two photocells are used. The positioning of these photo-
cells is important and depends on the striker position just before

2Patent no. WO 2005090822.

Table 1 Geometrical parameters of the used circular shells

Used material Copper Aluminium Mild steel

Parameter � 15.5 19.5 15.5 19.5
Parameter � 0.11 0.14 0.11 0.14
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the impact �Fig. 2�. It is important to underline that their position
represents one of the principal difficulties related to the synchro-
nization of the collected experimental data.

Tests are conducted under an initial impact velocity of about

Fig. 1 Brief view of the ACTP device: „1… cylindrical body; „2… crosspiece; „3…
roller; „4… intermediate cylinder; „5… receiving disk; „6… higher tightening screw;
„7… centering ball; „8… higher disk; „9… specimen; „10… lower conical half-shells;
„11… basic disk; „12… lower tightening screw; „13… lower conical clip; „14… lower
disk.

Fig. 2 Presentation of the used measurement instrumenta-
tions of the drop mass bench

Fig. 3 Variation of the impact velocity during the crushing
process
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9.5 m /s using either a mass of 45.5 kg �for the copper and mild-
steel tubes� or 27 kg �for the aluminum tubes�. As a typical ex-
ample, the rate of change of the impact velocity during the crush-
ing process is obviously illustrated in Fig. 3.

2.4 Experimental Procedure. Each employed circular shell
should be first mechanically assembled inside the ACTP, then it is
loaded between the platen and the striker of the dynamic drop
mass bench under an initial impact velocity of about 9.5 m /s at
room temperature. Having its instrumentation system, the impact
apparatus over which the ACTP is fixed is connected to a rapid
acquisition chain to record the force, displacement, and accelera-
tion during the collapse process.

In order to ensure the accuracy of experimental results, each
test is repeated twice under the same experimental conditions �ap-
plied velocity and temperature�. If the differences between the two
responses exceed 3%, then another test should be performed.

3 Experimental Results and Discussion
Three different modes of deformation are frequently generated

during tests: diamond mode �DM�, axisymmetric mode �AM�, and
mixed mode �XM�. For this last mode, it is necessary to distin-
guish two nuances: the AXM and the DXM corresponding to the
XMs with axisymmetric predominance and with diamond domi-
nance, respectively.

Extracted from a recent work �19�, some data conducted under
quasistatic loading are used for the sake of comparison. The load-
deflection and energy absorption evolutions during the crushing
process are described in Figs. 5, 6, 9, and 12.

The notations Dy and Qs correspond to the dynamic and qua-
sistatic loading condition, respectively. Table 2 demonstrates, for
each crushed specimen, the most repetitive deformation modes
obtained under the dynamic load and the mean �Fav� and peak
�Fmax� collapse loads. It is well known that the impact velocity
changes progressively with the crushing distance �Fig. 3�; there-

fore, to determine objectively the dynamic mean collapse load for
the employed metals, a crushed distance of 40 mm is used during
which all recorded forces are integrated. The choice of such a
distance will be discussed subsequently.

3.1 Uniaxial Dynamic Plastic Buckling

3.1.1 Deformation Modes. An examination of the tested circu-
lar shells at the end of the uniaxial collapse �Fig. 4� reveals that
their dynamic progressive plastic buckling takes place initially
with the formation of a wrinkle at each end simultaneously before
invading the rest of the structure from only one side. This is dif-
ferent from the quasistatic loading condition, where the deforma-
tion is unilateral with one intact end. A first analysis of Table 2
shows the dependence of the deformation mode on the geometri-
cal parameters and on the imposed boundary condition �free or
fixed-end condition�, rather than of the nature of the material, as
shown in Ref. �19�.

The aluminum and copper shells, characterized by the same
geometry ��=0.11 and �=15.5�, deform with the DM in the free-
end case even for the copper and mild shell steel having a bigger
geometry ��=0.14 and �=19.5�. Nonetheless, for these bigger
structures, the AM is essentially recorded in the biaxial 0 deg case
�Fig. 4�b� and Table 2�. Moreover, under quasistatic loading con-
dition, the plastic instability generates globally the same deforma-
tion mode, except for the mild steel where the deformation mode
is always of DM type �19�. However, this corroborates, in general,
correctly the conclusions reported by several authors �e.g., Refs.
�20,21��.

3.1.2 Buckling Loads. With regard to the applied loads �Fav
and Fmax�, Table 2 points out a significant effect of the coupling
among the geometrical parameters, employed boundary condi-
tions, and loading rate on the values of these loads for the three
employed materials. This effect appears principally at the begin-
ning of the crushing process �Fig. 5�. In comparison, the quasi-

Table 2 Deformation modes and the mean and peak collapse loads for different circular shells having different goemetrical
parameters loaded under different dynamic loading complexities

Copper Aluminium Mild steel

Geometrical
parameters Impact velocity �9.5 m /s�

� 15.5 19.5 15.5 19.5
� 0.11 0.14 0.11 0.14

Loading
path type

Deformation
mode

Fav and Fmax
�kN�

Deformation
mode

Fav and Fmax
�kN�

Deformation
mode

Fav and Fmax
�kN�

Deformation
mode

Fav and Fmax
�kN�

Uniaxial
loading

Dy free ends DM 19.8–49 DM 21.8–56 DXM 11–41.2 DM 27.5–94
Dy biaxial 0 dega AM 21.2–58 AM 22.3–6 AM 11–34.8 AM 29.1–96

Biaxial
loading

Dy biaxial 30 deg AXM 21.5–60 AM 24.8–64 XM 15.2–41.2 DXM 29.5–94
Dy biaxial 7 deg XM 22–64 AM 23–73 XM 15.5–53 DXM 31.3–95
Dy biaxial 5 deg XM 24.2–78 AM 26.8–82 DM 26–57.2 DM 31.6–00

aUnizxial fixed-end loading type.

Fig. 4 Deformation modes of the three used structures under two
boundary conditions: „a… free ends „DM…; „b… fixed ends „AM…

031013-4 / Vol. 75, MAY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



static and dynamic load-deflection curves have a rather similar
form, especially at the end of the collapse process where the two
loading rates become analogous due to the progressive reduction
in dynamic velocity. However, the most remarkable aspect is the
enhancement in the mean and peak collapse loads, whatever the
material and the impact mass are. Under quasistatic loading, it has
been especially shown �22� that the Fmax does not vary with the
used boundary conditions �i.e., free and fixed ends�. However, a
substantial variation in the Fmax is observed in the fixed-end case
loaded dynamically: varying from 39.4 kN to 58 kN �for copper
with �=15.5�, 20.6 kN to 34.8 kN �for aluminum�, and

40.6 kN to 96 kN �for mild steel�. This means that these metals
show an obvious sensitivity to the used dynamic loading rate.
Likewise, the response of these metals shows a reasonable in-
crease in their dynamic mean collapse loads �Fav� with respect to
the quasistatic ones. In fact, for a boundary condition of the free-
end type, these variations are from 17 kN to 19.8 kN �for copper
with �=15.5�, 10.3 kN to 11 kN �for aluminum�, and
21.1 kN to 27.3 kN �for mild steel�. This is due principally to the
progressive decrease in loading rate toward the quasistatic condi-
tion during the crushing process. As previously shown under qua-

Fig. 5 Plot of crushing load evolution versus axial deflection under uniaxial dynamic and
quasistatic loading conditions for the „a… copper, „b… aluminum, and „c… mild-steel circular
shells

Fig. 6 Energy absorption evolution versus axial deflection under uniaxial dynamic and qua-
sistatic loading condition for the „a… copper structures, „b… aluminum, and „c… mild-steel
structures
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sistatic loading, the fixed-end �biaxial 0 deg� case has always a
higher value than that of free-end one for these metals and their
structures loaded dynamically �Table 2�.

3.1.3 Energy Absorption. As far as the energy absorption is
concerned, Fig. 6 illustrates a clear enhancement in dissipating the
kinetic energy. Hence, enhancements in the absorbed energies for
an axial deflection ��=40 mm� are about 10%, 18%, and 38% for
copper, aluminum, and mild-steel shells, respectively. It is impor-
tant to underline that the mild-steel shells illustrate an obvious
sensitivity to the dynamic strain rates �Fig. 6�c��. However, this
material does not demonstrate any sensitivity to the quasistatic
strain rate �19�. Moreover, the tests performed on the copper struc-
tures show that the dynamic crushing with the biaxial 0 deg case
dissipates more energy than the free-end one �Fig. 6�a��. Figures
6�b� and 6�c� present an additional absorption of energy, com-
pared to that of quasistatic equivalent one. Thus, an increase of
40% in the energy absorption �i.e., additional energy� is clearly
noticed in the case of aluminum and mild steel for an axial de-
flection of �=14.5 mm. As a result, the strain rate sensitivity of
the material has a principal effect on the peak collapse load. Such
an increase confirms the increase in the resistance of aluminum
and mild steel to the plastic deformation �Figs. 5�b� and 5�c��.
This resistance decreases, however, progressively in the course of
the crushing process due to the decrease in the loading rate.

3.2 Biaxial Dynamic Plastic Buckling

3.2.1 Deformation Modes. Table 2 summarizes the dynamic
mechanical behavior of the different circular shells crushed biax-
ially. The recorded deformation mode is almost of XM type for
these shells having the geometry ��=15.5 and �=0.11�. As ex-
pected, the diamond part of the XM becomes more significant
with the increase in the loading path complexity and substituting
the AM systematically. It is also noticed that the biaxial 45 deg
case engenders a change in deformation mode for the aluminum
shells, generating therefore the DM instead of the XM. This could
be due to its mechanical behavior compared to that of copper �Fig.
7�. On the other hand, it is recognized that the AM takes place
only in the copper tubes having �=19.5 and �=0.14 �see Fig.
8�a��.

This shows, in a formal manner, that the geometrical param-
eters �in particular, �� represent predominant factors, with respect
to the lateral perturbation generated by the torsional component.
In fact, under biaxial compression-torsion loading, the torsional
component always provokes a certain deviation related to the co-
axiality between the “axial fibers” of the deformed circular shell
and the loading axis. The experimental results confirmed that at
the beginning of the entry of torsion in action, this practically
cannot disturb the deformation mode; i.e., the deformation type is
mainly controlled by the two parameters � and �. However, with
the progressive augmentation in the torsional component effect,

these parameters cannot, hereafter, be the only principal factors in
determining the deformation mode. Accordingly, a competition
phenomenon takes place among the geometrical parameters ��
and ��, the torsional component effect, and, notably, its rate of
change. Hence, the tangential disturbance becomes more signifi-
cant with collapse progression especially with the increase of the
loading path complexity, giving consequently a higher tangential
disturbance. It is well known that when the � has a value less than
15, the AM becomes generally the predominant deformation mode
for the circular shells �20�. However, under a biaxial combined
load, it is observed that for the copper circular shells with �
=19.5, the violation of this coaxiality requires further lateral dis-
turbance. Thus, the deformation mode for such structures is of
AM type, and it is not the case for the structures having a weaker
� ��=15.5�, as demonstrated in Figs. 7 and 8�a�. In the mild-steel
case, Fig. 8�b� and Table 2 show clearly that these shells with �
=19.5 and �=0.14 generate the DXM. This is due to the lateral
perturbation effect whatever the inclination angle is, except for the
angle 0 deg �biaxial 0 deg� where the deformation mode is of AM
type. Note that no analysis can be given which explains why a
particular mode shape is adopted by the given structures for this
material. Nonetheless, it seems that the interpretation of such a
structural behavior could be governed by the material behavior.

It is finally found that the mode of deformation for the em-
ployed materials under uniaxial loading is, in general, independent
of the loading rate �quasistatic or dynamic�. Nevertheless, the in-
crease in the torsional component supports the appearance of the
DM quite systematically, particularly in the biaxial 45 deg case.

3.2.2 Buckling Loads. The load-deflection curves of different
dynamic biaxial loading situations are demonstrated in Fig. 9.

Fig. 7 Typical examples of the deformation modes for the cop-
per and aluminum specimens having �=15.5 under different
dynamic loading complexities: „a… biaxial 45 deg, „b… biaxial
37 deg, and „c… biaxial 30 deg

Fig. 8 Deformation modes under different dynamic loading
complexities: „a… biaxial 45 deg, „b… biaxial 37 deg, and „c… bi-
axial 30 deg for specimens having �=19.5. „a… Copper. „b… Mild
steel.
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Their evolutions take similar forms with respect to the same shells
loaded quasistatically, given in Ref. �19�. These curves are char-
acterized primarily by a noticeable increase in the peak collapse
load �Fmax� particularly during the first plastic flow phase com-
pared to the uniaxial case for the three metals. In fact, depending
proportionally on the loading path complexity, such loads undergo
a considerable amplification �Fig. 9� even for different values of �
as in the copper case. This leads, for example, to enhancements in
the Fmax of 59% and 46% for the two sections having �=15.5 and
19.5, respectively �Table 2�. Beyond this peak load, the curves are
characterized by a load decrease and then a series of fluctuations
about a mean postbuckling load, the peaks and troughs being di-
rectly related to the formation of buckles and folding at various
buckling levels. An interaction effect between the loading rate and
the emergence of the torsional component on the material behav-
ior takes place. Then, the dynamic velocity decreases naturally
and progressively with crushing continuation to join roughly the
quasistatic state. For this reason and to give a maximum of objec-
tivity to determine the mean collapse load for each material and
loading condition, several calculations are performed in order to
determine this value using different axial deflections varying from
20 mm to 50 mm. It is finally concluded that these mean collapse
loads are determined by using an axial deflection of 40 mm. This
choice represents a better compromise, as illustrated clearly in
Fig. 10.

It is the biaxial 45 deg loading situation which generates always
the strongest Fav �24.2 kN for �=15.5 and 26.8 kN with �
=19.5� for the copper shells. Moreover, the magnitudes of the Fav
are always more significant in the biaxial loading than in the
uniaxial one �Fig. 9�a��.

On the other hand, even with a low impact velocity �at the end
of the crushing test�, the aluminum specimens demonstrate a re-
markable sensitivity not only to the strain rate but also, in a more
impressive manner, to the loading path complexity effect �Fig.
9�b��. Consequently, the Fav for the three given loading situations
are 11 kN �free ends�, 15.2 kN �biaxial 30 deg�, and 26 kN �biax-
ial 45 deg�, giving a maximum increase of 136% in the biaxial
45 deg case. As a matter of fact, one can interpret this behavior by
the fact that such a material changes its local behavior �could be at
the dislocation level� with respect to the strain rate coupled with

loading path complexity factor.
The crushing behavior of the mild-steel structures is described

in Fig. 9�c� with four different levels of complexity. The corre-
sponding Fav evolves with almost the same trend as in the case of
copper shells �Table 2�. Contrary to the results given in Ref. �19�,
under quasistatic loading, the dynamic buckling behavior of mild
steel shows a rather significant sensitivity to the loading path na-
ture. Indeed, a certain modification in the overall plastic flow
mechanism occurs. Moreover, the initial plasticity peak evolution
translates a certain sensitivity of this material to the loading path
complexity �Table 2 and Fig. 9�c��.

In order to thoroughly understand why the Fav and the energy
absorbed increase proportionally with the loading complexity, es-
pecially under dynamic conditions, let us analyze this effect in
Fig. 11, which displays the crushing load evolution for each fold
during the collapse process for the two extreme cases, the free
ends and the biaxial 45 deg. The data in this figure demonstrate
clearly that the mean value of each fold is generally affected by
the loading path complexity.

The influence of the loading rate and its complexity on the

Fig. 9 Evolution of collapse loads versus the axial deflection in different biaxial dynamic
loading cases for the „a… copper, „b… aluminum, and „c… mild-steel shells

Fig. 10 Determination of the mean collapse loads with differ-
ent loading complexities using different axial deflections
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crushing behavior is largely dependent on the used metals. For the
copper shells �Fig. 11�a��, the overall plastic flow is affected by
these factors. In fact, for an axial deflection of almost �=47 mm,
six buckles are observed in the free-end case against seven for the
biaxial 45 deg case. It seems that the difference between these
loading conditions related to the mean collapse load by fold is
almost due to changes in the overall plastic flow, together with the
material strength properties. On the other hand, in the case of
mild-steel structures and for �=37 mm, five buckles are recorded
in the free-end case against eight for the biaxial 45 deg �Fig.
11�c��. Since the increase in the mean collapse load is not highly
pronounced, one can therefore consider that this takes place al-

most via only the change in the overall plastic flow.
In this work, the most significant result is related to the alumi-

num shell behavior. Indeed, Fig. 11�b� illustrates that a consider-
able enhancement in the mean collapse load by fold is obviously
induced. Actually, this increase is involved by an interaction be-
tween the loading path complexity and its rate. Note that using the
same biaxial loading configuration and geometrical parameters ��
and ��, but under quasistatic loading rate, this material behavior
demonstrates a modest sensitivity to the loading path complexity
�19�. However, under dynamic loading conditions, a change in the
strength properties of the material can be provoked by local physi-
cal modifications, rather at the dislocation level, therefore leading

Fig. 11 Variation of the mean load for each fold occurring during shell collapse of „a… copper,
„b… aluminum, and „c… mild-steel shells under two loading paths

Fig. 12 Energy absorption evolution versus axial deflection under different dynamic loading
complexities for the „a… copper structures, „b… aluminum, and „c… mild-steel shells
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to an enhancement in the work hardening of the material. In a
more precise manner, the load enhancement is mainly governed
by a change in plastic collapse properties and, secondarily, by a
change in the number of buckles �i.e., overall plastic flow� in the
biaxial 45 deg case compared to the free-end one.

Concerning the heating effect, an increase in the temperature is
evidently observed notably within the plastic hinges. Note that in
this work, such an increase is not experimentally measured.
Hence, the thermal effect is considered neither qualitatively nor
quantitatively to estimate its effect on the collapse process.

3.2.3 Energy Absorption. The energy absorption is described
in Fig. 12. Figure 12�a� demonstrates the energy absorption for
the copper structures ��=15.5 and �=0.11� under five loading
paths �three biaxial loadings with different complexities and two
uniaxial loadings�. It reveals that after an axial displacement of
approximately 10 mm, the evolution of the energy absorbed un-
dergoes a deceleration. Likewise, in the biaxial loading cases,
whatever the angle of torsion is, the absorbed energy increases
remarkably for the biaxial 45 deg. Beyond a displacement of
20 mm, these evolutions become practically monotonous and
similar. It is worth emphasizing that the energy absorbed, as ex-
pected, is more significant in biaxial than in uniaxial and increases
proportionally with the inclination angle. For the three materials,
the biaxial 45 deg has the highest capacity to absorb the energy
than the other cases. In the case of aluminum, Fig. 12�b� shows a
significant enhancement in the energy absorption as a result of the
loading path complexity. The estimated energies for a crushing
distance of �=40 mm are 0.42 kJ for the free ends, 0.62 kJ in the
case of biaxial 30 deg and 1.07 kJ for the biaxial 45 deg. The
increase in the absorbed energy under the biaxial 45 deg is higher
than 150% in comparison with the traditional free-end buckling.

As a comparison between the quasistatic and dynamic shell
behaviors, the energy absorption histograms are presented in Fig.
13 for an axial deflection of �=30 mm in the case of copper and
aluminum shells. For the copper structures, the dynamic biaxial
37 deg and 45 deg loadings absorb more energy than the quasi-
static ones for the same structural configuration �Fig. 13�a��. Once
again, this highlights the loading rate effect on the material behav-
ior. In addition, the energy absorption capacity for the aluminum
shells �Fig. 13�b�� demonstrates a substantial improvement under
dynamic biaxial loading conditions, whereas the same structures
show a moderate sensitivity to the loading complexity for the
same structures under quasistatic loading. Hence, it is obviously
found that the maximum enhancement is higher than 160% in
favor of the biaxial 45 deg load vis-à-vis a classical uniaxial case
for an axial deflection of �=30 mm.

4 Concluding Remarks
The objective of this work is to enhance the strength properties

of materials under dynamic loading conditions. Hence, the key
point is to study the effect of the loading rate coupled with the
biaxial loading condition �combined compression and torsion� on
the progressive dynamic buckling response for three metallic
structures �made from copper, aluminum, and mild steel� having
different dimensions. It is intriguing to note that three parameters
control, in general, the crushing process under biaxial loading
conditions: specimen geometry ��, ��, loading complexity, and its
rate. Using the original device �the ACTP�, several degrees of
complexity of the biaxial loading paths are created within the
loaded circular shells during their collapses via three inclination
angles �30 deg, 37 deg and 45 deg� with the integral biaxial load-
ing situation. Under a dynamic loading path complexity, three
different strains �compression, bending, and shear� are simulta-
neously applied with more complex load/unload conditions. This
leads, a priori, to induce local physical phenomena responsible
for changes in strength properties �enhancement in the work hard-
ening�, notably in the case of aluminum shells and also in the
overall plastic flow �change in the number of buckles for a given

axial deflection�. Furthermore, the mild steel, which does not il-
lustrate a noticeable sensitivity to the quasistatic biaxial loading
conditions �19�, shows, however, a reasonable sensitivity to load-
ing path complexity and its rate.

The main conclusions are

�1� For the uniaxial case, there is a similarity of the deforma-
tion modes recorded under dynamic and quasistatic
loadings.

�2� The used materials �copper and, especially, aluminum and
mild steel� show an obvious sensitivity to the dynamic
loading compared to the quasistatic one.

�3� Under biaxial loading, the higher the inclination angle and
the more complex loading applied, the more severe the
rates of change of torsional component and, consequently,
the greater the mean collapse load and the corresponding
absorbed energy. Therefore, the biaxial 45 deg is consid-
ered as the most significant case, giving the highest Fav as
well as the energy absorbed. It is therefore recognized that
the enhancement in the energy absorption for the aluminum
shells is higher than 150%;

�4� Under dynamic biaxial loading, the deformation mode for
the materials is moderately sensitive to the amplitude of
torsion, contrary to the quasistatic one.

�5� Coupling of the studied parameters �geometry, type of ma-
terial, loading path complexity, and its rate� with the heat
effect in controlling the structure behavior needs a thorough
investigation.

�6� A microstructural study, particularly within the plastic
hinges, now becomes a becomes primordial issue in order
to interpret in a coherent way the enhancement in the mean

Fig. 13 Histograms of the energy absorbed under different dy-
namic loading complexities for an axial deflection of �
=30 mm for the „a… copper and „b… aluminum structures
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collapse load and the absorbed energy. This makes it pos-
sible to forecast very interesting scenarios caused by the
imposed experimental conditions.

Nomenclature
�=Rm / t � radial geometrical parameter
�=Rm /L � longitudinal geometrical parameter

Rm � mean radius of the shell
L � initial length of the shell
t � thickness of the shell
d � internal diameter of the shell

Dy � dynamic loading condition
Qs � quasistatic loading condition
Fav � mean collapse load

Fmax � peak collapse load
biaxial 30 deg,

37 deg, and 45 deg � combined biaxial compression and tor-
sion of the three inclination angles
�30 deg, 37 deg, and 45 deg�
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Modal Properties of Planetary
Gears With an Elastic Continuum
Ring Gear
The distinctive modal properties of equally spaced planetary gears with elastic ring gears
are studied through perturbation and a candidate mode method. All eigenfunctions fall
into one of four mode types whose structured properties are derived analytically. Two
perturbations are used to obtain closed-form expressions of all the eigenfunctions. In the
discrete planetary perturbation, the unperturbed system is a discrete planetary gear with
a rigid ring. The stiffness of the ring is perturbed from infinite to a finite number. In the
elastic ring perturbation, the unperturbed system is an elastic ring supported by the
ring-planet mesh springs; the sun, planet and carrier motions are treated as small per-
turbations. A subsequent candidate mode method analysis proves the perturbation results
and removes any reliance on perturbation parameters being small. All vibration modes
are classified into rotational, translational, planet, and purely ring modes. The well
defined properties of each type of mode are analytically determined. All modal properties
are verified numerically. �DOI: 10.1115/1.2839892�

1 Introduction

Planetary gears are widely used in automotive and aerospace
transmissions due to the advantages, such as compactness, high
torque/weight ratio, low bearing load, and high transmission ratio.
In practical systems where planetary gear vibration is a key con-
cern, ring gear elastic deformation is significant. This is especially
true for planetary gears with thin rims, including those used in
aerospace applications. The free vibration of planetary gears with
equally spaced planets has typically been studied by treating all
the planetary gear components as rigid bodies �1–7�. Lin and
Parker �5� established a lumped parameter model that includes
both transverse and torsional motion. The modal properties were
obtained analytically, and the vibration modes are classified into
rotational, translational, and planet modes. In the present paper,
these modes are called discrete rotational, translational, and planet
modes. Lin and Parker used this discrete model to study natural
frequency and vibration mode sensitivity �8�, natural frequency
veering �9�, and parametric instability caused by changing contact
conditions at the multiple tooth meshes �10�.

This study analytically addresses the dynamics of planetary
gears having elastic ring gears. An elastic-discrete model is devel-
oped, where the ring gear is modeled as an elastic body while all
other gears are represented as rigid bodies. Modal properties are
derived in detail using eigenvalue perturbation and a candidate
mode method. Two unperturbed systems are considered to form a
complete representation for all modes. This yields closed-form
expressions for all the eigenfunctions and a systematic character-
ization of planetary gears’ highly structured modal properties. All
vibration modes are classified in detail into four different types
according to their unique characteristics. These perturbation re-
sults are proved by a mathematically rigorous approach where
vibration modes having the form revealed by perturbation are as-
sumed and then shown to satisfy all equations of the elastic-
discrete eigenvalue problem. This builds a base for subsequent

studies, such as dynamic response, parametric instability, and con-
tact loss nonlinearity, all of which commonly use modal expan-
sion methods.

2 Modeling and Equations of Motion
An elastic-discrete model of a planetary gear is shown in Fig. 1.

All gear meshes are represented by linear springs. The sun, car-
rier, and planets are considered as rigid bodies, while the ring gear
is modeled as a thin elastic body. The bearings and supports of the
sun, carrier, and planets are modeled as two perpendicular springs
of equal stiffness. The bearings and supports of the ring gear are
represented as an elastic foundation with uniform radial and tan-
gential distributed stiffnesses per unit length krbs and krus, respec-
tively. The planets are identical and equally spaced. All ring-
planet mesh stiffnesses are equal �krp�, and all sun-planet mesh
stiffnesses are equal �ksp�, where krp and ksp are averages over a
mesh cycle. The angular speeds are assumed to be small, so gy-
roscopic effects are neglected.

The coordinates are shown in Fig. 1. The deformations of the
sun and carrier p j = �xj yj uj�T, j=s ,c are described relative to the
fixed basis �i , j ,k�; the tangential displacement of the ring is
u�� , t�; the ring radial deflection is determined from the inexten-
sibility condition w=−�u /�� �11�; and the deflections of the plan-
ets are pn= ��n �n un�T, n=1, . . . ,N. The symbol uj denotes rota-
tional �or tangential� deflection �rotation in radians times the gear
base radii rs ,rr ,rp or radius of the carrier rc�.

The equations of motion for the sun and carrier are the same as
those in the discrete model �5�, while the equations of motion for
the ring and planets change. The equation of motion for the elastic
ring gear is �11�

Meü + kbendL1u + krpL2u + krp�
n=1

N

L3
n��n sin �r − �n cos �r − un� = 0

�1�

Me = �R�1 −
�2

��2	, kbend =
EJ

R3�1 − �2�
,

L1 = − � �6

��6 + 2
�4

��4 +
�2

��2	
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L2 = − �
n=1

N 
�sin2 �r
�2

��2 − cos2 �r	��� − �n� + �sin �r
�

��

+ cos �r	sin �r

���� − �n�
��

� + �krusR − krbsR
�2

��2	� krp

L3
n = cos �r��� − �n� − sin �r

���� − �n�
��

�2�

where kbend is the ring bending stiffness �see the Nomenclature�.
L1, L2, and L3

n are dimensionless operators. The first two terms of
Eq. �1� represent the in-plane vibration of a free ring; the last two
terms incorporate the effects of gear meshes and elastic supports.

Separation of the ring rigid body motions from the elastic de-
formation v�� , t� is achieved with the expansion

u��,t� = v��,t� + U1�t�ei� + U−1�t�e−i� + U0�t�

= �
m=	2

	


Vm�t�eim� + U1�t�ei� + U−1�t�e−i� + U0�t� �3�

Thus, v is orthogonal to the rigid body motions


0

2�

vd� = 0, 
0

2�

vei�d� = 0, 
0

2�

ve−i�d� = 0 �4�

Substituting Eq. �3� into Eq. �1� and forming the inner product of
the result with eim� yield the discretized equations of motion.
Comparison of the equations for the rigid ring motions
U1 ,U−1 ,U0 to the equations of motion for a rigid ring planetary
gear model with variables pr= �xr ,yr ,ur�T �5� yields the relations

xr = − i�U1 − U−1�, yr = U1 + U−1, ur = U0 cos �r, Ir = mrR
2

�5�

The true moment of inertia expression for a ring is Ir,true=mr�r2
2

+r1
2� /2, where r1 and r2 are the inner and outer radii of the ring

gear, respectively. The difference between Ir and Ir,true is small
when the ring is thin.

We introduce the following dimensionless quantities:

ṽ =
v
R

, � =
t

T
, T =�mr

krp
, k̃i =

ki

krp
,

i = r,c,s,p,rp,sp,bend, k̃rbs =
krbsR

krp
�6�

k̃rus =
krusR

krp
, m̃j =

mj

mr
, Ĩ j =

Ij

mrrj
2 , j = r,c,s,n �7�

In what follows, the � on all variables is omitted, and the equa-
tions of motion remain the same except that krp is replaced by 1,
Me is replaced by 1 /2��1− ��2 /��2��, and krbsR, krusR are replaced
by krbs, krus.

The displacement of the whole system is separated into v�� ,��
and q���. v is the elastic deformation of the ring gear, and q is a
vector of the deflections for the discrete elements including the
ring rigid body motions,

�8�
The dimensionless equations of motion and the associated eigen-
value problem in extended operator form are

Mä + Ka = 0 �9�

− 2Ma + Ka = 0 �10�

where a= �v ,qT�T is referred to as an extended variable,  is the
natural frequency, and M, K are extended stiffness and inertia
operators defined by their action on elements of the space of ex-
tended variables according to

Ma = 
�v − �2v/��2��/2��
Mq

�, Ka = 
�kbendL1 + L2�v + L3q

L4v + Kq
�
�11�

L3q = �
n=1

N 
cos �r��� − �n� − sin �r

���� − �n�
��

��n �12�

L4v = 
�
n=1

N

��br
T���=�n

� 0 0 �bp
T���=�1

. . . �bp
T���=�N�T

,

� =
�v
��

sin �r + v cos �r �13�

br = �− sin �rn cos �rn 1�T, bp = �sin �r, − cos �r, − 1�T

�14�

�n = − xr sin �rn + yr cos �rn + ur + �n sin �r − �n cos �r − un

�15�

M and K are self-adjoint with the inner product �a1 ,a2�
=�0

2�v1v̄2d�+q1
Tq̄2, where an overbar denotes complex conjugate.

M and K �see Appendix for details� are the dimensionless mass
and stiffness matrices for planetary gears based on a discrete
model. Their dimensional forms are identical to the mass and
stiffness matrices in Ref. �5� with the only difference in Mr and
Krb as

Mr = diag�1,1,1/cos2 �r� ,

Krb = � diag�krbs + krus,krbs + krus,2krus/cos2 �r� �16�

Expansion of Eq. �10� into N+4 groups of equations associated
with the individual components yields

Fig. 1 Elastic-discrete model of a planetary gear and corre-
sponding system coordinates. The distributed springs around
the ring circumference are not shown.
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−
2

2�
�1 −

�2

��2	v + kbendL1v + L2v + L3q = 0 �17�

− 2Mrpr + �Krb + �
n

Kr1
n 	pr + �

n

Kr2
n pn + �

n

��br���=�n
� = 0

�18�

− 2Mcpc + �Kcb + �
n

Kc1
n 	pc + �

n

Kc2
n pn = 0 �19�

− 2Msps + �Ksb + �
n

Ks1
n 	ps + �

n

Ks2
n pn = 0 �20�

− 2Mppn + �Kc2
n �Tpc + �Kr2

n �Tpr + �Ks2
n �Tps + Kpppn

+ �bp���=�n
= 0, n = 1, . . . ,N �21�

Equation �10� is cast entirely in discrete form with modal ex-
pansion of v as

v��,�� = �
m=	2

	JN

Vm���eim� �22�

where J�1 is an integer. The basis functions eim� are complete,
Eq. �22� converges, and J is arbitrarily large. Thus, the error in Eq.
�22� can be made as small as desired. No restriction is put on J in
what follows, so the findings apply to the continuum ring model
without any limitation introduced by the expansion �22�.

A discretized model results from substitution of Eq. �22� into
Eqs. �17�–�21� and then forming the inner product of Eqs. �17�,
�18�, and �21� with eip�. Numerical experiments on the discretized
equations confirm that ring elastic deformation alters the natural
frequencies and vibration modes compared to the lumped param-
eter model and introduces additional natural frequencies associ-
ated with modes dominated by ring elastic deformation. The nu-
merical solutions indicate that all vibration modes of this elastic-
discrete model are classified into four types: rotational,
translational, planet, and purely ring modes.

For example, a planetary gear with six equally spaced planets is
analyzed with J=3 in Eq. �22�. The system parameters and the
dimensionless natural frequencies are listed in Table 1. The natu-
ral frequencies in Table 1 include all four mode types: 1, 9, and
14 are for rotational modes; 2,3 and 7,8 are for translational
modes; 4,5 and 10,11 are for degenerate planet modes �type 2�
and 6, 13 are for distinct planet modes �type 3�; 12 is for a
purely ring mode.

Figure 2�a� shows the vibration mode of a rotational mode
�1�. From the numerical simulations, a rotational mode has the
following characteristics: �a� The discrete elements q have the
same properties as a discrete rotational mode, where the transla-
tions of the sun, carrier, and ring rigid motion are zero, and all
planets have identical deflections; �b� the associated natural fre-
quency is distinct; �c� the elastic deformation of the ring contains
only jN, j=1,2 , . . . ,J nodal diameter components.

Figure 2�b� shows the vibration mode of a translational mode
�2,3�. A translational mode has the following characteristics: �a�
The discrete elements q have the same properties as a discrete
translational mode, where the rotations of the sun, carrier, and ring
rigid motion are zero, and the deflections of the planets are related
by a rotation matrix; �b� the associated natural frequency is re-
peated with multiplicity 2; �c� the elastic deformation of the ring
contains only jN	1 nodal diameter components, where j is any
nonzero integer satisfying jN	1� �−JN ,−JN+1, . . . ,JN� �a con-
dition imposed by the 	JN limits in Eq. �22��.

Planet modes are classified into two subtypes according to the
degeneracy of the natural frequencies. For odd N, all planet modes
are degenerate, as are the majority of planet modes for even N.
Degenerate planet modes have the following characteristics: �a�
The discrete elements q have the same properties as a discrete
planet mode, where the deflections of the sun, carrier, and ring
rigid motion are zero, and the deflections of the planets are scalar
multiples of the first planet’s deflection; �b� the associated natural
frequency is repeated with multiplicity 2; �c� each mode is asso-
ciated with a particular s� �2,3 , . . . , int��N−1� /2��. For that par-
ticular s, the elastic deformation of the ring contains only jN	s
nodal diameter components, where j is any integer satisfying
jN	s� �−JN ,−JN+1, . . . ,JN�. Figure 2�c� shows a degenerate
planet mode �4,5� where the two nodal diameter component is
the dominant ring deformation. For even N, the remaining planet
modes have distinct natural frequencies. Their discrete elements
behave as in �a� above, but their elastic ring deflection contains
only jN+N /2 nodal diameter components, where j is any integer
satisfying jN	N /2� �−JN , . . . ,JN� �see Fig. 2�d� for a distinct
planet mode�.

Thus, planet modes are classified into int�N /2�−1 subtypes ac-
cording to the ring nodal diameter components they contain.
Planet modes having jN	s nodal diameter components are
named type s planet modes. Each planet mode belongs to a unique
type. For the example where N=6, two types exist: the degenerate
planet modes are type 2 �s=2, . . . , int��N−1� /2��, and the distinct
planet modes are type 3 �s=N /2�, which only exist for even N.
There are no planet modes outside of these two types for N=6.
Table 2 summarizes the number of degenerate/distinct planet
modes and their types for varying numbers of planets.

Figure 2�e� shows a purely ring mode �12�. A purely ring mode
has the following characteristics: �a� The discrete elements q are
all zero; �b� the natural frequency is distinct; �c� the elastic defor-
mation of the ring contains only a single nodal diameter compo-
nent.

In this example �N=6, J=3�, 3N+2JN+7=61 eigensolutions
are obtained numerically: J+6=9 rotational modes, 4J+10=22
translational modes, �2JN−7J�+ �3N−9�=24 planet modes di-
vided as 2J+3=9 degenerate pairs and J+3=6 distinct modes,
and 2J=6 purely ring modes.

The remainder of this paper analytically proves that these prop-
erties �natural frequency multiplicity, modal properties, and the
number of each type of mode� hold for general planetary gears.

Table 1 Dimensional parameters and dimensionless natural frequencies of a planetary gear
with six equally spaced planets. The designations R, T, P, and PR denote rotational, transla-
tional, planet, and purely ring modes.

Inertias �kg� Ir /rr
2=8.891, Ic /rc

2=6.000, Is /rs
2=2.500, Ip /rp

2 =2.000
Masses �kg� mr=7.350, mc=5.430, ms=0.400, mp=1.000
Stiffnesses �N/m� krp=ksp=108, krbs=krus=0,kbend=5�106, ks=ksu=5�107, kc=kcu=5�1011,

kp=109

Pressure angle �deg� �r=�s=24.60
Dimensionless
natural frequencies

1=0.1520 �R�, 2,3=0.1871 �T�, 4,5=0.6472 �P�, 6=1.0227 �P�,
7,8=1.0231 �T�, 9=1.1009 �R�, 10,11=1.1695 �P�, 12=1.6971 �PR�,
13=1.8549 �P�, 14=1.9161 �R�
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3 Perturbation Analysis
To find all natural frequencies and vibration modes of the

elastic-discrete model of a planetary gear, two perturbations are

used for different ranges of parameters. For the chosen nondimen-
sional variables, the stiffness of the ring-planet mesh is always
unity �krp�1�. The first perturbation is termed discrete planetary
perturbation �DPP�, with the unperturbed system being a discrete
planetary gear having a nearly rigid ring gear where the bending
stiffness is O�1 /�� while the stiffnesses of all remaining meshes/
supports are O�1�. The small quantity � is the ring bending com-
pliance. The opposite case of DPP is elastic ring perturbation
�ERP�. In this case, the bending stiffness is O�1� and the stiff-
nesses of the remaining meshes/supports �except krp�1� are
O�1 /��. The unperturbed system for the ERP is an elastic ring
having multiple springs with the elimination of the rigid body
motions. The attached springs represent the ring-planet gear
meshes. The combined eigensolutions from the DPP and ERP
form a complete set of eigensolutions for planetary gears having
elastic rings without any redundancy �as proved in a subsequent
candidate mode method solution�. This process leads to analytical
results that mathematically expose the system’s highly structured
modal properties.

3.1 Discrete Planetary Perturbation. In DPP, the ring bend-
ing stiffness is much larger than the mesh and bearing stiffnesses.
The mesh and bearing stiffnesses are O�1�, while the ring bending
stiffness kbend=1 /�, where � is a small parameter. The eigenvalue
problem in extended operator form is

− 2Ma + K̂a = 
− 2�v − �2v/��2��/2��
− 2Mq

� + 
L1v/�
0

�
+ 
L2v + L3q

L4v + Kq
� = 0 �23�

where M and K̂ are self-adjoint operators. The eigensolutions of
Eq. �23� are represented as

a = a0 + �a1 + O��2�, 2 = 0
2 + �� + O��2� ,

a0 = 
v0

q0 �, a1 = 
v1

q1 � �24�

Substitution of Eq. �24� into Eq. �23� gives the perturbation equa-
tions. The perturbation equation of order �−1 is L1v0=0. L1 is
positive definite, giving

v0 = 0 �25�

Substitution of Eq. �25� into the remaining perturbation equations
yields

− 0
2Mq0 + Kq0 = 0 �26�

L1v
1 = − L3q0, − 0

2Mq1 + Kq1 = �Mq0 − L4v
1 �27�

Equation �26� is the eigenvalue problem for a discrete �rigid
ring� planetary gear model �5�. From �25� and �26�, the unper-
turbed eigenfunction is

a0 = 
 0

q0 � �28�

The structured properties of the discrete model unperturbed eigen-
solutions are proven analytically in Ref. �5�, where the discrete
system vibration modes q0 are classified into rotational, transla-
tional, and planet modes. In this study, they are called discrete
rotational, translational, and planet modes. In the elastic-discrete
model, similar mode types are found; they are called rotational,
translational, and planet modes. The different mode types are con-
sidered separately.

Common to each mode type, v1 is solved from the first equation
of Eq. �27� by expanding v1 as v1=�m=	2

	JN Vm
1 eim�, multiplying Eq.

�27� by e−im�, and integrating from 0 to 2�. This yields

Fig. 2 Typical modes of a planetary gear. The system param-
eters are given in Table 1. Distinct planet modes as in „d… only
exist for an even number of planets.
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Vm
1 = −

cos �r − im sin �r

2�m2�m2 − 1�2 �
n=1

N

�n
0e−im�n �29�

where �n
0 is the nth ring-planet mesh deflection without consider-

ing the elastic deformation of the ring gear, as given by Eq. �15�.
According to Eq. �29�, V−m

1 = V̄m
1 .

3.1.1 Rotational Modes. When the unperturbed eigenfunction
q0 from Eq. �26� is a discrete rotational mode, the translational
motions of the sun, carrier, and ring are zero and all the planets
have the same deflections �5�

q0 = �0 0 ur
0 0 0 uc

0 0 0 us
0 �1

0 �1
0 u1

0

. . . �1
0 �1

0 u1
0�T �30�

In the absence of any rigid constraints on any degrees of freedom
�e.g., fixed carrier rotation�, six such modes exist, each having a
distinct natural frequency. Application of these properties to Eq.
�29� yields

Vm
1 = −

cos �r − im sin �r

2�m2�m2 − 1�2 �r1
0 �

n=1

N

e−im�n,

�r1
0 = ur

0 + �1
0 sin �r − �1

0 cos �r − u1
0 �31�

Because the planets are equally spaced with �n=2��n−1� /N, the
identity �n=1

N e−im�n =0 holds for m� jN, where j is an arbitrary
nonzero integer. Thus, for q0 being a discrete rotational mode, the
elastic deformation of the ring in the perturbed system contains
only the jN nodal diameter components

Vm
1 = −

cos �r − im sin �r

2�m2�m2 − 1�2 N�r1
0 , m = 	 N, . . . , 	 JN �32�

The eigenvalue perturbation � is determined by the solvability
condition of the second of Eq. �27� as �with �Mq0 ,q0�=1�

� = �L4v
1,q0� = −

N2��r1
0 �2

� �
m=jN

j=1,. . .,J

�m, �m =
cos2 �r + m2 sin2 �r

m2�m2 − 1�2

�33�
A candidate solution of the second of Eq. �27� is proposed as

q1 = �0, 0 ur
1 0 0 uc

1 0 0 us
1 �1

1 �1
1 u1

1

. . . �1
1 �1

1 u1
1�T �34�

Note that q1 has the same form as q0. Use of Eq. �34� and the
known discrete rotational mode properties reduces Eq. �27� to

�2�krus/cos2 �r + N − 0
2Ir�ur

1 + N�r1
1 = �Irur

0 −
N

�
�r1

0 �
m=jN

j=1,. . .,J

�m

�35�

�kcu + Nkp − 0
2Ic�uc

1 − Nkp�1
1 = �Icuc

0 �36�

�ksu + Nksp − 0
2Is�us

1 − Nksp�u1
1 − �1

1 sin �s + �1
1 cos �s� = �Isus

0

�37�

N��Kc2
1 �Tpc

1 + �Kr2
1 �Tpr

1 + �Ks2
1 �Tps

1 + �Kpp − 0
2Mp�p1

1�

= �NMpp1
0 − bp

N

�
�r1

0 �
m=jN

j=1,. . .,J

�m �38�

Expressing Eqs. �35�–�38� in matrix form yields the 6�6 linear
system,

Arotprot
1 = brot �39�

prot
1 = �ur

1 uc
1 us

1 �1
1 �1

1 u1
1�T �40�

brot = �Mrotprot
0 −

N

�
�r1

0 �
m=jN

j=1,. . .,J

�m�1 0 0 bp
T�T,

Mrot = diag�Ir,Ic,Is,NMp� �41�

One can show that the solvability condition of Eq. �39� is identical
to Eq. �33�, so it is satisfied. This guarantees that the solution of
the second of Eq. �27� has the assumed form Eq. �34�. The nor-
malization condition �q1 ,Mq0�=0 becomes �prot

1 ,Mrotprot
0 �=0 in

this problem. This and Eq. �39� yield


 Arot

�Mrotprot
0 �T �prot

1 = 
brot

0
� ⇒ Ârotprot

1 = b̂rot �42�

The solution of Eq. �42� is prot
1 = �Ârot

T Ârot�−1Ârot
T b̂rot. This com-

pletes the solution for q1 in Eq. �27�.
Collecting results, we have six eigenfunctions a in Eq. �24�

with the form

a = �� �
m=jN

j=	1,¯,	J

Vm
1 eim�

q0 + �q1
� �43�

The discrete elements of the planetary gear �including the ring
rigid body motion� deflect as in the discrete rotational modes de-
scribed in Ref. �5�. The elastic ring deflection contains only the jN
nodal diameter components. The natural frequencies of these
modes are distinct.

3.1.2 Translational Modes. When the unperturbed eigenfunc-
tion from Eq. �26� is a discrete translational mode, the eigenvalues
are repeated with multiplicity 2 and the rotational motions of the
carrier, sun and ring are zero �5�. The pair of degenerate vibration
modes q�0 and q̂0 satisfy

q�0 = �p�r
0 p�c

0 p�s
0 p�1

0 . . . p�N
0 �T,

q̂0 = �p̂r
0 p̂c

0 p̂s
0 p̂1

0 . . . p̂N
0 �T �44�

Table 2 Number of planet modes in different subtypes for different number of planets N, where � denotes not applicable

Planet mode catergory

Number of planets, N

4 5 6 7 8 9 10

Distinct planet modes J+3 0 J+3 0 J+3 0 J+3
Degenerate planet modes 0 2�2J+3� 2�2J+3� 4�2J+3� 4�2J+3� 6�2J+3� 6�2J+3�
Type 2 planet modes J+3 2�2J+3� 2�2J+3� 2�2J+3� 2�2J+3� 2�2J+3� 2�2J+3�
Type 3 planet modes � � J+3 2�2J+3� 2�2J+3� 2�2J+3� 2�2J+3�
Type 4 planet modes � � � � J+3 2�2J+3� 2�2J+3�
Type 5 planet modes � � � � � � J+3
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p� j
0 = �xj

0 yj
0 0�T, p̂ j

0 = �yj
0 − xj

0 0�T, j = r,c,s �45�

When the planets are located at �n=2��n−1� /N, the nth planet
displacements p�n

0, p̂n
0 are related as


p�n
0

p̂n
0 � = 
 cos �nI sin �nI

− sin �nI cos �nI
�
p�1

0

p̂1
0 �, n = 1,2, . . . ,N �46�

where I is a 3�3 identity matrix. Six such eigensolution pairs
exist.

The degenerate unperturbed eigenvalue 0
2 of multiplicity 2 in

Eq. �24� has two orthonormal, unperturbed eigenfunctions a�0 and
â0 of the extended operator form �10�. As a consequence, the
unperturbed eigenfunction a0 is a linear combination of a�0 and â0,

a0 = c1a�0 + c2â0, a�0 = 
 0

q�0 �, â0 = 
 0

q̂0 � �47�

where c1 and c2 are constants. Analogous to the procedure for the
rotational mode, use of the discrete translational mode properties
reduces Eq. �29� to

Vm
1 = −

cos �r − im sin �r

4�m2�m2 − 1�2 
��
n=1

N

e−i�m−1��n + �̄�
n=1

N

e−i�m+1��n� ,

� = �c1 + ic2��A1 − iA2�

A1 = yr
0 cos �r − xr

0 sin �r + ��1
0 sin �r − ��1

0 cos �r − u�1
0

A2 = − yr
0 sin �r − xr

0 cos �r + �̂1
0 sin �r − �̂1

0 cos �r − û1
0 �48�

where �̄ is the complex conjugate of �. �n=1
N e−i�m−1��n being zero

requires m� jN+1, where j is an arbitrary integer; �n=1
N e−i�m+1��n

being zero requires m� jN−1. Thus, Vm
1 vanishes if and only if

m� jN	1. This yields the following rule: The elastic deforma-
tion of the ring for elastic translational modes contains only
jN	1 nodal diameter components.

The solvability conditions of the second equation of Eq. �27�
form a 2�2 algebraic eigenvalue problem Drc=�c, where c
= �c1 ,c2�T. Dr is diagonal with the repeated eigenvalues

�1 = �2 = −
N2�A1

2 + A2
2�

4� �
m=jN+1

�m �49�

where here �and in all subsequent summations� j is an integer such
that m takes only values within the range specified in Eq. �22�,
i.e., −JN�m�JN and m�−1,0 ,1. Thus, the eigenvalues for the
elastic ring model remain degenerate and c1 ,c2 are indeterminate.

The eigenfunction perturbation is proposed as q1=c1q�1+c2q̂1,
where q�1 and q̂1 are a pair of vectors having the same properties
�44�–�46� as the discrete translational modes. Substitution of q1

into Eq. �27� yields a set of simplified equations that, if satisfied,
ensures Eq. �27� is satisfied for any c1 and c2. The perturbation
equations from Eq. �27� for the sun, carrier, and ring rigid motion
reduce to the six equations �50�–�55�, and the perturbation equa-
tions for all the planets reduce to Eqs. �56� and �57�

��krbs + �krus +
N

2
− 0

2mr	xr
1 −

N

2
���r

1 sin �r + �̂r
1 cos �r�

= �mrxr
0 + �1 �50�

��krbs + �krus +
N

2
− 0

2mr	yr
1 +

N

2
���r

1 cos �r − �̂r
1 sin �r�

= �mryr
0 + �2 �51�

�kc + Nkpn − 0
2mc�xc

1 +
N

2
kp�− ��1

1 + �̂1
1� = �mcxc

0 �52�

�kc + Nkpn − 0
2mc�yc

1 +
N

2
kp�− �̂1

1 − ��1
1� = �mcyc

0 �53�

�ks +
N

2
ksp − 0

2ms	xs
1 +

N

2
ksp�− ��s

1 sin �s + �̂s
1 cos �s� = �msxs

0

�54�

�ks +
N

2
ksp − 0

2ms	ys
1 +

N

2
ksp�− ��s

1 cos �s − �̂s
1 sin �s� = �msys

0

�55�

kpnp�c
1 + Kr4

1 p�r
1 + Ks4

1 p�s
1 + �Kpp − 0

2Mp�p�1
1 = �Mpp�1

0 + �3bp

�56�

kpnp̂c
1 + Kr4

1 p̂r
1 + Ks4

1 p̂s
1 + �Kpp − 0

2Mp�p̂1
1 = �Mpp̂1

0 + �4bp

�57�

where

��r
1 = ��1

1 sin �r − ��1
1 cos �r − u�1

1, �̂r
1 = �̂1

1 sin �r − �̂1
1 cos �r − û1

1

�58�

��s
1 = − ��1

1 sin �s − ��1
1 cos �s + u�1

1 �̂s
1 = − �̂1

1 sin �s − �̂1
1 cos �s + û1

1

�59�

�1 =
− N2�A1 sin �r + A2 cos �r�

4� �
m=jN+1

�m,

�2 =
N2�A1 cos �r − A2 sin �r�

4� �
m=jN+1

�m �60�

�3 =
NA1

2� �
m=jN+1

�m, �4 =
NA2

2� �
m=jN+1

�m �61�

Kr4
1 = � − sin2 �r sin �r cos �r 0

sin �r cos �r cos2 �r 0

sin �r cos �r 0
� ,

Ks4
1 = ksp� − sin2 �s − sin �s cos �s 0

− sin �s cos �s − cos2 �s 0

sin �s cos �s 0
�

��r
1 and ��s

1 are the deflections of the first planet in the direction of
the lines of action for the ring-planet and sun-planet meshes, re-
spectively. The superscript 1 denotes the first-order perturbation.

Expressing Eqs. �50�–�57� in matrix form after multiplying Eqs.
�56� and �57� by N /2, the second equation of Eq. �27� reduces to
the 12�12 linear system,

Atrnptrn
1 = btrn �62�

ptrn
1 = �xr

1 yr
1 xc

1 yc
1 xs

1 ys
1 ��1

1 ��1
1 u�1

1 �̂1
1 �̂1

1 û1
1�T

�63�

btrn = �Mtrnptrn
0 + ��1 �2 0 0 0 0 �3bp

T �4bp
T�T

�64�

Mtrn = diag�1,1,mc,mc,ms,ms,
N

2
Mp,

N

2
Mp	 �65�

One can show that the solvability condition of Eq. �62� is identical
to Eq. �49�, so it is satisfied. Thus, Eq. �27� is satisfied for the
given q1 independent of c1 and c2 �which remain indeterminate�,
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and the perturbation q1 has the same form as q0.
In summary, there are six degenerate pairs of eigenfunctions a

in Eq. �24� with the form

a = �� �
m=jN+1

Vm
1 eim� + c.c.

q0 + �q1 � = �� �
m=jN	1

Vm
1 eim�

q0 + �q1 � �66�

Note that terms associated with m= jN−1 in Eq. �66� are the com-
plex conjugate terms for m= jN+1. The discrete elements of the
planetary gear �including the ring rigid body motion� deflect as in
the translational modes described in Ref. �5�. The elastic ring
deflection contains only the jN	1 nodal diameter components.
The natural frequencies of these modes are degenerate.

3.1.3 Planet Modes. For N�4, the unperturbed system has
three unperturbed eigenvalues associated with the discrete planet
modes, and each of them is degenerate with multiplicity N−3. For
these modes, the sun, carrier, and rigid ring motions are zero. The
deflections of the planets are proportional with pn

0=wn
l p1

0, where
the N−3 sets of coefficients satisfy �5�

�
n=1

N

wn
l = 0, �

n=1

N

wn
l cos �n = 0, �

n=1

N

wn
l sin �n = 0,

l = 1, . . . ,N − 3 �67�

When N is odd, the N−3 solutions of Eq. �67� are

wn
2s−3 = cos s�n, wn

2s−2 = sin s�n, s = 2, . . . ,
N − 1

2
�68�

When N is even, the N−3 solutions of Eq. �67� consist of Eq. �68�
for s=2, . . . , int�N−1 /2� and the additional solution

wn
N−3 = cos

N

2
�n �69�

A general discrete planet mode of the unperturbed system is the
linear combination

q0 = �
l=1

N−3

dlql
0

with

ql
0 = �0 0 0 w1

l p1
0 . . . wN

l p1
0�T �70�

With this mode, reduction of Eq. �29� yields the elastic deforma-
tion of the ring as

Vm
1 = − �r

0cos �r − im sin �r

2�m2�m2 − 1�2 �
l=1

N−3 �dl�
n=1

N

wn
l e−im�n	,

�r
0 = �1

0 sin �r − �1
0 cos �r − u1

0 �71�

The N−3 solvability conditions for the second of Eq. �27� give

Dpd = �d, d = �d1 d2 . . . dN−3�T �72�

Dp = �Dtj��N−3���N−3�

= −
��r

0�2

2�

 �

m=	2

	JN

�m��
n=1

N

wn
t e−im�n	��

n=1

N

wn
j eim�n	�

�N−3���N−3�

�73�

Although the elements Dtj of Dp appear complicated, use of the
solutions �68� and �69� simplifies them. Dp is diagonal, yielding
closed-form expressions for �. When N is odd, the first-order
eigenvalue perturbations are

�2s−3 = �2s−2 = −
N2��r

0�2

4� �
m=jN+s

�m, s = 2, . . . ,
N − 1

2
�74�

When N is even, Eq. �74� holds for s=2, . . . , �N /2�−1, and the
remaining eigenvalue perturbation is

�N−3 = −
N2��r

0�2

4� �
m=jN+�N/2�

�m �75�

For each of the three unperturbed discrete planet modes with mul-
tiplicity N−3, the corresponding perturbed eigenfunctions evolve
into int��N−3� /2� pairs of degenerate planet modes for arbitrary
N and one additional distinct planet mode for even N.

For degenerate planet modes with natural frequency perturba-
tion from Eq. �74�, the unperturbed eigenfunction is a linear com-
bination of two instead of N−3 modes in Eq. �70�. According to
this and Eq. �68�, Eq. �71� reduces to

Vm
1 = − �r

0cos �r − im sin �r

2�m2�m2 − 1�2 �
n=1

N

�d2s−3 cos s�ne−im�n

+ d2s−2 sin s�ne−im�n� �76�

Vm
1 is zero when m� jN	s. This yields a rule governing the nodal

diameter components of the ring modal deflections for a mode
with given s� �2, . . . , int��N−1� /2��: The elastic deformation of
the ring for degenerate planet modes contains only jN	s nodal
diameter components. The nonzero nodal diameter components
are

Vm
1 = − N�r

0cos �r − im sin �r

4�m2�m2 − 1�2 �d2s−3 − id2s−2�, m = jN + s

�77�

Vm
1 = − N�r

0cos �r − im sin �r

4�m2�m2 − 1�2 �d2s−3 + id2s−2�, m = jN − s

�78�

For distinct planet modes whose natural frequency is 2=0
2

+��N/2 �exist only for even N�, Eq. �71� reduces to

Vm
1 = − �r

0cos �r − im sin �r

2�m2�m2 − 1�2 �
n=1

N

cos�N

2
�n	e−im�n

= − N�r
0cos �r − im sin �r

4�m2�m2 − 1�2 for all m = jN 	
N

2
�79�

Terms in the first expression for Vm
1 in Eq. �79� vanish for m

� jN	 �N /2�. Accordingly, the perturbed eigenfunction contains
only jN	 �N /2� nodal diameter components �s=N /2�.

For the degenerate eigensolution �2s−3=�2s−2 with specified s
� �2,3 , ¯ , int��N−1� /2��, the eigenfunction perturbation q1 is
proposed as the linear combination:

q1 = d2s−3q�1 + d2s−2q̂1 �80�

q�1 = �0 0 0 z1
1�p1

1�T . . . zN
1 �p1

1�T�T,

q̂1 = �0 0 0 z1
2�p1

1�T . . . zN
2 �p1

1�T�T �81�

where q�1 and q̂1 have the same form as the discrete planet modes
in Eq. �70�. Substituting this form of q1 into Eq. �27�, the equa-
tions associated with the sun, carrier, and ring rigid motions lead
to three equations identical to Eq. �67� except wn

l →zn
l , but here

l=1,2. The solutions for zn
1, zn

2 are

zn
1 = cos s�n, zn

2 = sin s�n, n = 1,2, . . . ,N �82�

The remaining equations of Eq. �27� �the ones associated with
deflections of the planets� yield
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�Kpp − 0
2Mp�p1

1 = �2s−3Mpp1
0 +

N�r
0

2�
bp �

m=jN+s

�m �83�

One can show that the solvability condition of Eq. �83� is identical
to Eqs. �74� and �75�. Thus, p1

1 is solved from Eq. �83�, which,
with Eq. �82�, completes the solution for q1. This ensures q1 has
the structure of a discrete planet mode.

For the distinct eigenvalue �N−3 in Eq. �75�, one can similarly
show that the eigenfunction perturbation q1 has the form of a
discrete planet mode.

In summary, for each s� �2,3 , . . . , int��N−1� /2�� there are
three degenerate pairs of eigenfunctions as in Eq. �24� with the
form

as = �� �
m=jN+s

Vm
1 eim� + c.c.

q0 + �q1 � �84�

For even N, an additional three distinct eigenfunctions are present
with the form of Eq. �84� and s=N /2. The discrete elements of the
planetary gear �including the ring rigid body motion� deflect as in
the planet modes described in Ref. �5�. The elastic ring deflection
contains only the jN	s nodal diameter components.

3.2 Elastic Ring Perturbation. ERP is the complementary
case of DPP. The stiffness of the ring-planet mesh is unity in both
cases �from Eq. �6��. In ERP, the ring bending stiffness is O�1�,
while in DPP it is O�1 /��; the stiffnesses of all the remaining
meshes/bearings are O�1 /��, while in DPP they are O�1�. The
perturbation parameter is defined by �=1 /ksp. A perturbation pro-
cess similar to Eqs. �24�–�27� yields the perturbation equations for
a0

− 0
2�1 + �2/��2�v0/�2�� + kbendL1v

0 + L2v
0 + L3q0 = 0 �85�

Krbpr
0 = 0, Kcbpc

0 + �
n

Kc2
n pn

0 = 0 �86�

�Ksb + �
n

Ks1
n 	ps

0 + �
n

Ks2
n pn

0 = 0 ,

�Kc2
n �Tpc

0 + �Ks2
n �Tps

0 + Kpppn
0 = 0 �87�

Equations �86� and �87� form a problem as Aq0=0. One can prove
that A is positive definite so q0=0. Accordingly, the last item in
Eq. �85� vanishes, so the unperturbed system is an elastic ring
having equally spaced spring supports with elimination of the
three rigid body motions as indicated in Eq. �4�. The unperturbed
eigenfunction is

a0 = 
v0

0
�T

�88�

Equations �28� and �88� are the unperturbed eigenfunctions from
DPP and ERP, respectively. Together they form a nonoverlapping,
complete �in the mathematical sense� basis for the linear space of
extended variables a= �v ,qT�T. This suggests that the set of per-
turbed eigenfunctions from DPP and ERP forms a complete set of
vibration modes for planetary gears having elastic ring gears. This
conclusion is made rigorous subsequently.

The perturbation equations for a1 are

Krbpr
1 = � − �

n

br� �v0

��
sin �r + v0 cos �r	�

�=�n

�89�

Kcbpc
1 + �

n

Kc2
n pn

1 = 0, �Ksb + �
n

Ks1
n 	ps

1 + �
n

Ks2
n pn

1 = 0

�90�

�Kc2
n �Tpc

1 + �Ks2
n �Tps

1 + Kpppn
1 = − bp�� �v0

��
sin �r + v0 cos �r	�

�=�n

�91�

−
0

2

2�
�1 +

�2

��2	v1 + kbendL1v
1 + L2v

1 =
�

2�
�v0 +

�2v0

��2 	 − L3q1

�92�
We draw on the modal properties of a ring on a general elastic

foundation as determined analytically in Ref. �11�, where the
modal expressions for rings having equally spaced springs are
given. In the unperturbed problem �85�, each spring is oriented
with an angle of � /2−�r to the radial direction. With elimination
of the ring rigid body motions, the ring deflection is represented as
Eq. �22�. Thus, 2JN−2 unperturbed modes exist. For a free ring
with no supports, all the natural frequencies are degenerate with
multiplicity two. When the ring has equally spaced springs, some
natural frequencies split and the others remain degenerate. The
unperturbed modes of the ERP are classified into four types based
on the nodal diameter components they contain: Type 0, Type 1,
Type s, and single nodal diameter component modes �11�.

For brevity, only Type 0 modes are considered. They are linear
combinations of the jN nodal diameter components, v0

=� j=1
J VjN

d cos jN�. Such a mode exists for each of the J values of
d=N ,2N , . . . ,JN, where d indicates the dominant nodal diameter
component. Substitution of this expression for v0 into Eq. �89�
yields

Krbpr
1 = 
0 0 − N cos �r �

m=jN

j=1,. . .,J

Vm
d�T

�93�

Because Krb is diagonal, the first two elements of pr
1 correspond-

ing to ring rigid translations are zero, which is the same as for a
discrete rotational mode. Similar analysis of Eqs. �90� and �91� for
the sun, carrier, and planets reveals that q1 has the form �30� of a
discrete rotational mode. The eigenvalue perturbation � is ob-
tained from the solvability condition of Eq. �92�. Following
lengthy algebra, the solution v1 of Eq. �92� has the same form as
v0. These results show that the perturbed eigenfunction has the
properties of a rotational mode as defined earlier.

Similar processes show that when the unperturbed mode v0 is
of Type 1 from Ref. �11�, the perturbed mode of the elastic-
discrete model is a translational mode. When the unperturbed
mode v0 is of Type s from Ref. �11�, the perturbed mode is a
planet mode. When the unperturbed mode is a single nodal diam-
eter component mode, the perturbed mode is a purely ring mode.

Thus, every unperturbed ERP mode evolves into one of the four
modal categories of the elastic-discrete model. The same is true
for DPP. The numbers of modes obtained from each of DPP and
ERP are 3N+9 and 2JN−2, respectively. The total number of
eigenfunctions obtained from the perturbation analyses is 3N
+2JN+7, which equals the number of degrees of freedom for
arbitrary J in Eq. �22�. The modal property classification from
perturbation analysis exactly matches the properties of the nu-
merical results in Fig. 2, and Tables 1 and 2. Evidently, all modes
have been included and categorized from the two perturbations.

4 Candidate Mode Method
The foregoing perturbation analysis derives the modal proper-

ties by combining two perturbation problems, each having a dif-
ferent perturbation parameter and unperturbed problem. The
method appeals to physical reasoning where the elastic-discrete
system modes are seen to evolve from known simpler systems. A
plausible argument given above heuristically concludes that this
approach captures all modes of the general system. Nevertheless,
perturbation is inherently linked to small values of the perturba-
tion parameter, and the use of two separate perturbation problems
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to conclude that all modes are accounted for is not rigorous math-
ematically. Guided by the foregoing perturbation results, this sec-
tion derives the general elastic-discrete system modal properties in
a rigorous way that is free from any reliance on a small parameter.
This alternate derivation assumes eigensolutions having the prop-
erties of the four mode types from perturbation and then confirms
that such eigensolutions satisfy the eignevalue problem. An ac-
counting at the end ensures this approach captures all possible
vibration modes.

A candidate rotational mode has the ring deflection

vrot = �
j=1

J

VjN cos jN� �94�

and discrete element deflection qrot having the form �30�. Substi-
tuting Eq. �94� into Eq. �17�, multiplying by cos l�, and integrat-
ing from 0 to 2� yield

−
1 + l2

2
2Vl +

cl

2
Vl + N cos2 �r�

j=1

J

VjN + N�r cos �r = 0,

l = N,2N, . . . ,JN �95�

cl = 2�kbendl
2�l2 − 1�2 + 2�krus + 2�l2krbs,

�r = �1 sin �r − �1 cos �r − u1 �96�

Use of the assumed modal properties to reduce Eq. �18� yields
only one equation for the ring rigid motion,

�2�krus/cos2 �r + N − 2/cos2 �r�ur + N�r + cos �r�
j=1

J

VjN = 0

�97�

The remaining equations in Eq. �18� vanish. Similarly, Eqs. �19�
and �20� reduce to

�kcu + Nkp − 2Ic�uc − Nkp�1 = 0 �98�

�ksu + Nksp − 2Is�us + Nksp�− �1 sin �s − �1 cos �s + u1� = 0

�99�

With the assumed modal form and algebraic manipulation, Eq.
�21� becomes

�Kc2
1 �Tpc + �Kr2

1 �Tpr + �Ks2
1 �Tps + �Kpp − 2Mp�p1

+ bp cos �r�
j=1

J

VjN = 0 �100�

Equations �95�–�100� form a reduced eigenvalue problem of order
J+6 with the eigenvector �VN , . . . ,VJN,ur ,uc ,us ,�1 ,�1 ,u1�T. In
general, the eigenvalues are all distinct �except for especially cho-
sen parameters�. From the eigenvectors of the reduced eigenvalue
problem, J+6 rotational modes of the full system are constructed
from Eq. �94� and qrot.

A pair of candidate translational modes is

a� = 
 �
m=jN+1

Vmeim� + c.c.,q�trn
T �T

, â = 
 �
m=jN+1

iVmeim� + c.c.,q̂trn
T �T

�101�

where q�trn, q̂trn are a pair of discrete translational modes having
the same form, as described in Eqs. �44�–�46�. �Recall the note
below Eq. �49� regarding allowable values of m.� Guided by the
perturbation solution in Eq. �48�, Vm is expressed as Vm= �cos �r

− im sin �r�Um, where Um is complex.
Substituting a� and â into Eq. �17�, multiplying by e−il�, and

integrating from 0 to 2� yield the equations governing Um. When
l= jN+1, there are 2J−1 equations,

− �1 + l2�2Ul + clUl +
N

2
�A1 − iA2�

+ N �
m=jN+1

�cos2 �r + m2 sin2 �r�Um = 0 �102�

where A1 and A2 have the form in Eq. �48�, and cl is defined in Eq.
�96�. When l= jN−1, the following 2J−1 equations result

− �1 + l2�2Ul + clUl +
N

2
�A1 + iA2�

+ N �
m=jN−1

�cos2 �r + m2 sin2 �r�Um = 0 �103�

For other values of l, the resulting equations from Eq. �17� vanish.
For each l in Eq. �102�, there is a corresponding −l in Eq. �103�
whose equation is the complex conjugate of Eq. �102�. Thus, Eqs.
�103� and �102� are equivalent. One obtains 4J−2 real equations
because Ul in Eq. �102� is complex. Substitution of a� and â into
Eq. �18�–�21� generates an additional 12 real equations similar to
Eqs. �50�–�57� with the elimination of superscripts 0 or 1, substi-
tution of �=0, and replacement of �1, �2, �3, �4 by �5, �6, �7,
�8, respectively,


�5

�6
� =

Ne−i�r

2 �
m=jN+1

�cos2 �r + m2 sin2 �r�Um · 
 i

− 1
� + c.c.

�104�


�7

�8
� = �

m=jN+1

�cos2 �r + m2 sin2 �r�Um · 
1

i
� + c.c. �105�

The resulting 4J+10 real equations form a reduced order eigen-
value problem. Because a� and â are interchangeable, all eigenso-
lutions of the reduced order problem must occur as degenerate
eigenvalues with multiplicity 2. With these eigensolutions, 2J+5
pairs of degenerate translational modes are constructed from Eq.
�101�.

A pair of candidate planet modes for a selected s
� �2,3 , . . . , int��N−1� /2�� is

as1 = 
 �
m=jN+s

Vmeim� + c.c.,q�plt,s
T �T

�106�

as2 = 
 �
m=jN+s

iVmeim� + c.c.,q̂plt,s
T �T

�107�

q�plt,s
T = �0 0 0 cos s�1p1

T . . . cos s�Np1
T� ,

q̂plt,s
T = �0 0 0 sin s�1p1

T . . . sin s�Np1
T� �108�

where q�plt,s, q̂plt,s are a pair of discrete planet modes having the
same form, as described in Eq. �70�. The linear combination
d2s−3as1+d2s−2as2 gives the elastic deformation of the ring in the
form

v = �
m=jN+s

Vm�d2s−3 + id2s−2�eim� + c.c. �109�

Comparing Eq. �109� to the perturbation solution �77� and �78�
suggests that the Vm in Eqs. �106� and �107� can be written as
Vm= �cos �r− im sin �r�Um with real Um and U−m=Um. This is
adopted in the candidate modes �106� and �107�.

Substituting as1 into Eq. �17�, multiplying by e−il�, and integrat-
ing from 0 to 2� yield the equations for Um. When l= jN+s, there
are 2J equations,
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− �1 + l2�2Ul + clUl +
N

2
�r + N �

m=jN+s

�cos2 �r + m2 sin2 �r�Um = 0

�110�

where �r is defined in Eq. �71�. When l= jN−s, 2J equations
result that are equivalent to Eq. �110�. For other values of l, the
resulting equations vanish. With the properties of as1, Eqs.
�18�–�20� are satisfied. Substitution of as1 into Eq. �21� yields the
same equation for each n,

�Kpp − 2Mp�p1 = − 2 �
m=jN+s

�cos2 �r + m2 sin2 �r�Um

�111�

The resulting 2J+3 equations in Eqs. �110� and �111� form a
reduced order eigenvalue problem with 2J+3 eigensolutions. Sub-
stitution of as2 into Eq. �10� yields the same 2J+3 order eigen-
value problem. Therefore, each of the 2J+3 eigensolutions corre-
sponds to a pair of planet modes. Thus, for each s, 2J+3 pairs of
degenerate modes are constructed from Eqs. �106�–�108�. When N
is odd, there are �N−3� /2 different values of s� �2,3 , . . . ,N
−1 /2�, so �N−3��2J+3� /2 degenerate pairs of planet modes are
constructed from Eqs. �106�–�108�. When N is even, there are
N /2−2 different values of s� �2,3 , . . . ,N /2−1�, so �N /2−2�
��2J+3� degenerate pairs of planet modes are similarly con-
structed.

When N is even, besides the degenerate planet modes, there are
additional distinct planet modes. They have the same form as the
degenerate planet mode in Eq. �106� with s=N /2. With some
algebraic manipulation of Eq. �106�, the distinct planet modes
have the form

a = 
 �
m=jN+�N/2�

j=0,. . .,J−1

Vm cos m� qplt,N/2
T �T

,

qplt,N/2
T = �0 0 0 p1

T − p1
T . . . p1

T − p1
T� �112�

where Vm is real. A similar reduction as above yields a J+3 order
eigenvalue problem for the Vm and p1 with eigenvalue 2 from
Eqs. �17� and �21�. This gives J+3 planet modes with distinct
eigenvalues from Eq. �112�. Totally, for even N, there are �2JN
−7J�+ �3N−9� planet modes constructed from Eqs. �106�–�108�
and �112�. Table 2 summarizes the different numbers and types of
planet modes.

The final mode type is that of purely ring modes having the �not
normalized� form

a = ��cos �r sin m� − m sin �r cos m��Vm 0�T,

m = � jN , j = 1, . . . ,J for odd or even N

jN + N/2, j = 0, . . . ,J − 1 for even N
�

�113�

In such modes, only the ring gear deforms, and the ring has nodes
at all ring-planet mesh locations. All purely ring mode natural
frequencies are distinct. Note that a purely ring mode with m
= jN in Eq. �113� has the same structure as a rotational mode
except that many elements of the rotational mode are zero. Simi-
larly, a purely ring mode with m= jN+N /2 in Eq. �113� has the
same structure as a distinct planet mode. Rotational modes and
purely ring modes with m= jN emerge as split modes of the de-
generate eigensolution pairs of a free ring; distinct planet modes
and purely ring modes with m= jN+N /2 similarly emerge as split
modes for even N �11�.

Substitution of Eq. �113� into Eq. �17�, multiplication by e−il�,
and integration from 0 to 2� yield the following J order diagonal
eigenvalue problem for odd N �2J order for even N� with eigen-
value 2,

�− �1 + l2�2 + cl�Vl = 0,

l = � jN , j = 1, . . . ,J for odd or even N

jN + N/2, j = 0, . . . ,J − 1 for even N
�

�114�

where cl is from Eq. �96�. The remaining equations �18�–�21�
vanish for the a in Eq. �113�. According to Eq. �114�, the closed-
form natural frequencies expressions are 2=cl / �1+ l2�, where cl

depends on the ring bending stiffness �kbend� and the distributed
stiffnesses around the ring circumference �krus and krbs�. Thus, the
natural frequencies of purely ring modes are independent of mesh
stiffnesses �ksp and krp�. This can also be explained through the
gear mesh deflections. The general expressions of sun-planet and
ring-planet mesh deflections ��sn and �rn� are

�sn = ys cos �sn − xs sin �sn − �n sin �s − �n cos �s + us + un

�115�

�rn = ��v cos �r +
�v
��

sin �r	�
�=�n

− xr sin �rn + yr cos �rn + ur

+ �n sin �r − �n cos �r − un �116�

Substitution of Eq. �113� into Eqs. �115� and �116� ensures that
both the sun-planet and ring-planet mesh deformations are zero.

Overall, four types of modes are identified. For odd N, the
numbers of modes for rotational, translational, planet, and purely
ring modes are J+6, 4J+10, �2JN−6J�+ �3N−9�, and J, respec-
tively. For even N, they are J+6, 4J+10, �2JN−7J�+ �3N−9�, and
2J, respectively. While the numbers of planet and purely ring
modes are different for odd and even numbers of planets, the total
number of modes is �2J+3�N+7 for either odd or even N. This
total equals the total degrees of freedom with v�� , t� from Eq. �22�
and J arbitrarily large. Thus, all modes have been categorized.

Furthermore, the numbers of rotational and translational modes
are independent of the number of planets N. Changing the number
of planets N, while retaining the same J in the ring deformation
expansion �22�, only changes the numbers of planet modes and
purely ring modes. Table 2 lists how the number of planets N
affects the number of degenerate and distinct planet modes, and it
specifies the planet mode type breakdown for each N. If N in-
creases by 1, the total number degrees of freedom increases by
2J+3 as the total degrees of freedom is �2J+3�N+7. If N in-
creases by 1 from odd to even, J+3 of the additional modes are
distinct planet modes, and the remaining J additional modes are
purely ring modes �the total number of purely ring modes be-
comes 2J�. If N increases by 1 from even to odd, all 2J+3 addi-
tional modes are planet modes; furthermore, J purely ring modes
change into planet modes. Therefore, the number of planet modes
increases by 3J+3, and the number of purely ring modes de-
creases by J.

The natural frequency multiplicities and all modal properties
from the candidate mode method match the numerical solution in
Tables 1 and 2 and Fig. 2 �as well as the perturbation results� for
arbitrary N and J.

5 Conclusions
The distinctive modal properties of planetary gears having

equally spaced planets and an elastic continuum ring gear are
derived using perturbation analysis and proved using a candidate
mode method. The main conclusions are the following:

1. All vibration modes of equally spaced planetary gears hav-
ing an elastic ring gear are classified into rotational, transla-
tional, planet, and purely ring modes. For each mode type,
the deflections of each planetary gear component, including
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the elastic ring, are derived in closed form. In addition, the
number of each mode type and multiplicity of the natural
frequencies are determined.

2. The modal deflection properties of the sun, carrier, and plan-
ets for rotational, translational, and planet modes are the
same as for the discrete model, while the deformation of the
ring gear is governed by simple analytical rules dictating
which nodal diameter components are present in each mode
type.

3. Rotational modes contain jN nodal diameter ring deforma-
tion components, while the sun, carrier, and ring rigid mo-
tions have only rotational motion. All planets have the same
displacement. The natural frequencies are distinct.

4. Translational modes contain jN	1 nodal diameter ring de-
formation components, while the sun, carrier, and ring rigid
motions have only translational motion. The deflections of
individual planets are related by a rotation matrix. The natu-
ral frequencies have multiplicity 2.

5. Planet modes contain jN	s nodal diameter ring deforma-
tion components, where s is one of 2 ,3 , . . . , int�N /2�. The
translation and rotation of the sun, carrier, and rigid ring are
zero, and the deflections of the planets are proportional to
each other. Most of these natural frequencies have multiplic-
ity 2, but some natural frequencies are distinct for an even
number of planets.

6. A purely ring mode has only a single nodal diameter ring
deformation component. The deflections of all the discrete
elements, including the ring rigid motion, are zero. The natu-
ral frequencies are distinct.

7. Changing the number of planets N does not affect the num-
ber of rotational and translational modes. How the vibration
modes are distributed between purely ring modes and planet
modes with the addition of a planet depends on whether N
changes from odd to even or vice versa.

Nomenclature
Superscripts 0 and 1 of a ,q ,v denote the unperturbed and the
first-order perturbation eigenfunctions, respectively. Subscripts
c ,r ,s ,n denote the carrier, ring, sun, and the nth planet.

�r � ring-planet pressure angle
�s � sun-planet pressure angle
�n � location of the nth planet

�rn � �n+�r
�sn � �n−�s

� � Poisson’s ratio
� � mass density per unit length
E � Young’s modulus
J � area moment of inertia
N � number of planets
R � neutral radius of the ring gear

kj, kju � translational and rotational stiffness of
supports/bearing for the carrier and sun, j=c ,s

kbend � ring bending stiffness
krp � ring-planet mesh stiffness
ksp � sun-planet mesh stiffness

krbs, krus � radial, tangential distributed ring elastic foun-
dation stiffnesses

Ij � mass moment of inertia for the ring, carrier
and sun, j=r ,c ,s

mj � mass of the ring, carrier and sun, j=r ,c ,s
rj � base radius for the ring and sun, j=r ,c ,s

r1, r2 � inner, outer radii of the ring gear
u, w � ring tangential, radial deflections

v � ring elastic tangential deflection
xj ,yj ,uj � translational and rotational displacements of

the ring, sun and carrier, j=r ,c ,s

�n ,�n ,un � radial, tangential, and rotational displacements
of the nth planet

Appendix: Nondimensional Matrices M and K

M = diag�Mr,Mc,Ms,M1, . . . ,MN�

M j = diag�mj,mj,Ij/rj
2�, j = c,s,1, . . . ,N ,

Mr = diag�1,1,1/cos2 �r�

K=�
� Kr1

n + Krb Kr2
1

¯ Kr2
N

� Kc1
n + Kcb Kc2

1
¯ Kc2

N

� Ks1
n + Ksb Ks2

1
¯ Ks2

N

Kpp
1

symmetric �

Kpp
N

�
K jb = diag�kjx,kjy,kju�, j = c,s ,

Krb = � diag�krbs + krus,krbs,2krus/cos2 �r�

krbs and krus are uniform radial and tangential distributed stiff-
nesses, respectively. k

ju
* is torsional stiffness with units F−L / rad

and kju=k
ju
* /rj

2 with units F /L.

Kpp
n = Kr3

n + Kc3
n + Ks3

n

Kr1
n = � sin2 �rn − cos �rn sin �rn − sin �rn

cos2 �rn cos �rn

symmetric 1
�

Kr2
n = �− sin �rn sin �r sin �rn cos �r sin �rn

cos �rn sin �r − cos �rn cos �r − cos �rn

sin �r − cos �r − 1
�

Kr3
n = � sin2 �r − cos �rn sin �r cos �r

cos2 �r cos �r

symmetric 1
�

Kc1
n = kpn� 1 0 − sin �n

1 cos �n

symmetric 1
� ,

Kc2
n = kpn�− cos �n sin �n 0

− sin�n − cos �n 0

0 − 1 0
�

Kc3 = diag�kpn,kpn,0�

Ks1
n = ksp� sin2 �sn − cos �sn sin �sn − sin �sn

cos2 �sn cos �sn

symmetric 1
�

Ks2
n = ksp� sin �sn sin �s sin �sn cos �s − sin �sn

− cos �sn sin �s − cos �sn cos �s cos �sn

− sin �s − cos �s 1
�

Ks3
n = ksp� sin2 �s cos �s sin �s − sin �s

cos2 �s − cos �s

symmetric 1
�
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�sn = �n − �s, �rn = �n + �r
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A Microcontact Non-Gaussian
Surface Roughness Model
Accounting for Elastic Recovery
Most statistical contact analyses assume that asperity height distributions �g�z*�� follow
a Gaussian distribution. However, engineered surfaces are frequently non-Gaussian with
the type dependent on the material and surface state being evaluated. When two rough
surfaces experience contact deformations, the original topography of the surfaces varies
with different loads, and the deformed topography of the surfaces after unloading and
elastic recovery is quite different from surface contacts under a constant load. A theoret-
ical method is proposed in the present study to discuss the variations of the topography
of the surfaces for two contact conditions. The first kind of topography is obtained during
the contact of two surfaces under a normal load. The second kind of topography is
obtained from a rough contact surface after elastic recovery. The profile of the probability
density function is quite sharp and has a large peak value if it is obtained from the
surface contacts under a normal load. The profile of the probability density function
defined for the contact surface after elastic recovery is quite close to the profile before
experiencing contact deformations if the plasticity index is a small value. However, the
probability density function for the contact surface after elastic recovery is closer to that
shown in the contacts under a normal load if a large initial plasticity index is assumed.
How skewness (Sk) and kurtosis (Kt), which are the parameters in the probability density
function, are affected by a change in the dimensionless contact load, the initial skewness
(the initial kurtosis is fixed in this study) or the initial plasticity index of the rough surface
is also discussed on the basis of the topography models mentioned above. The behavior
of the contact parameters exhibited in the model of the invariant probability density
function is different from the behavior exhibited in the present model.
�DOI: 10.1115/1.2840043�

Keywords: microcontact, skewness, kurtosis, non-Gaussian probability density function

1 Introduction
All engineered surfaces are microscopically rough, and the con-

tact between two such surfaces is carried by the asperities on the
surfaces. This characterization is important to the study of many
interfacial phenomena, such as friction, wear, and thermal and
electrical contact resistances. Study of the deformation behavior
of contact asperities and accurate modeling of rough surfaces is
important in order to better understand contact problems.

A significant amount of research has been carried out on the
contact of rough surfaces as detailed in review papers �1–3�.
Rough surfaces are usually described in one of the following
ways: �a� statistical description of rough surfaces with certain as-
perity shapes; �b� generation of rough surfaces, based on statistical
description; �c� digitization of measured real rough surfaces; and
�d� characterization using fractal geometry theory. These different
roughness representations give rise to different microcontact mod-
els. Most of these papers mentioned that the pioneering contribu-
tion to this field was made by Greenwood and Williamson �GW�
�4�, who developed an elastic contact model �the GW model�. In
actuality, this model was first introduced by Zhuravlev �5�, who
derived the general integral expressions for the contact load and
the contact area, and calculated integrals for the case when the
distribution of summits is linear. The GW model is similar to
Zhuravlev’s model. In the GW model, the hemispherical tipped

asperities are assumed to have equal radii, and most importantly,
the asperity heights from a certain mean reference plane follow a
probability density function �statistical distribution�. With the ad-
ditional assumption of elastic �Hertzian� microcontacts existing
between this rough surface and a rigid smooth surface, Green-
wood and Williamson derived relationships for the total contact
area and the contact load, expressed as a function of the separation
between the flat and the mean summit level. The basic asperity
GW model has been extended to study the cases of other contact
geometries, such as curved surfaces �6�, surfaces with nonuniform
radii of curvature of asperity peaks �7,8�, two rough surfaces with
elliptic paraboloidal asperities �9�, and anisotropic surfaces �10�.
Although the GW contact model has been widely accepted,
Greenwood and Wu �11� made the comment that the definition of
a “peak” as a point higher than its neighbors on a profile intro-
duced by the GW model was a mistake, and it should be made
clear that peaks or summits are not asperities. The true picture of
an asperity goes back to Archard’s concept of “protuberances on
protuberances” �11�.

Traditionally, statistical microcontact models have assumed a
symmetric Gaussian distribution for the heights of the surface
asperities. However, it has been recognized that many common
machining processes produce non-Gaussian surfaces that are char-
acterized by two nondimensional statistical characteristics, skew-
ness and kurtosis, which represent the asymmetry and flatness of
the distribution, respectively �12–14�. Typical skewness and kur-
tosis values for surface roughness produced with various manu-
facturing processes are given in Ref. �15�. Electrical discharge
machine �EDM� and turning operations produce positively
skewed surfaces, whereas milling, honing, and grinding produce
negatively skewed surfaces. Several research papers have been
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written on the contact of rough surfaces with an asymmetric dis-
tribution of asperity heights �16–21�. McCool introduced a two-
parameter Weibull probability density function to model the dis-
tribution of asperity heights �16�, and subsequently normalized it
to a one-parameter distribution to account for such asymmetric
surfaces �17�. Yu and Polycarpou adopted the Weibull distribution
to model asperity heights, and used the elastic-plastic model de-
veloped by Chang, Etsion and Bogy �the CEB model� to calculate
the contact load, real area of contact, and the number of contact-
ing asperities �18�. Yu and Polycarpou also extended rough sur-
faces to include the contact of two rough surfaces in which their
distribution of asperity heights can either be symmetric or asym-
metric, with the asymmetric case being modeled using the normal-
ized Weibull distribution �19�. Several other studies have pro-
posed other non-Gaussian distributions, like the Yu and
Polycarpou one based on Nayak’s model, in which the skewness
and kurtosis of the asperity height distribution are derived as a
function of bandwidth parameter � �20�, and Pearson’s system of
frequency curves to represent asymmetric rough surfaces �21�.
According to the above studies, the probability density function of
asperity heights before rough surfaces make contact can be either
a Gaussian or a non-Gaussian distribution function. The assump-
tion of a Gaussian distribution, when the actual distribution of the
asperity heights is non-Gaussian, can lead to incorrect results.

In the present study, the probability density functions of asper-
ity heights for two contact conditions are discussed. The skewness
�Sk� and kurtosis �Kt� parameters in the non-Gaussian probability
density function are varied with the mean separation of two con-
tact surfaces. These two parameters are evaluated under the con-
dition of either two contact surfaces under a constant load or the
rough surface after elastic recovery. When two rough surfaces
meet, the original topography of the surfaces is no longer invari-
ant but varied with applied loads. The topographies of a surface
obtained from experimental results �22� of different loads show
the probability density function of surface asperities to be non-
Gaussian distributions. The variations of surface skewness with
the mean asperity separation �d*� have been studied by Chung and
Lin �23�. In their study, the relationship between skewness �Sk�
and the mean asperity separation �d*� was derived based on the
experimental results shown in the study of Othmani and Kamin-
sky �22�. Hence, the results obtained by Chung and Lin �23� are
suitable for a specific rough surface only. In order to improve the
semiempirical limitation of the results by Chung and Lin �23�, a
method is thus proposed in the present study to obtain the varia-
tions of the probability density function of asperity heights with
the mean asperity separation by assuming the initial topography to
have either a Gaussian or non-Gaussian distribution. The skew-
ness �Sk� and the kurtosis �Kt� are thus varied depending on the
dimensionless contact load �F

t
*� and the initial plasticity index of

the rough surface. The key concept is that the value of the prob-
ability density function of asperity heights is set equal to zero

when asperity heights �z*� are greater than the mean asperity
separation �d*�. These two roughness parameters are determined
by the principle that the integration of the probability density
function over the range of z* �the dimensionless asperity height
based on the mean of asperity heights� is equal to 1. The prob-
ability density function after unloading and further finishing the
elastic recovery is quite different from that obtained from surface
contacts under a constant load. It is totally dependent on the area
magnitude beneath the initial probability density function profile
associated with the elastic deformation region. The area in the
profile of the probability density function associated with the elas-
tic recovery of surface asperities shows a direct relationship with
the initial plasticity index. The theoretical results of the skewness
and kurtosis parameters varying with the mean asperity separation
and the initial skewness and kurtosis are investigated. The elastic-
plastic microcontact behavior of two rough surfaces is developed
to investigate the effect of a variable non-Gaussian probability
density function of asperity heights �g� on the total contact area
and the contact load.

2 Theoretical Analysis of Contact Surfaces
The contact of two rough surfaces �see Fig. 1� can be modeled

by a flat smooth surface in contact with a rough surface. z is the
height of an asperity measured from the mean surface of summit
heights. The asperity interference � is given as

� = z − d �1�

where d denotes the distance between the smooth plane and the
mean surface of summit heights. If the mean radii of curvature of
the asperities on Surfaces 1 and 2 are R1 and R2, respectively, the
equivalent rough surface can be expressed to have the radius of
curvature R satisfying 1 /R= �1 /R1�+ �1 /R2�. �1 and �2 denote the
standard deviations of Surfaces 1 and 2, respectively. The standard
deviation � for this equivalent rough surface before contact defor-
mations occur satisfies �=��1

2+�2
2.

In the present study, three deformation regimes are included in
the study of asperity deformations under interference. The theory
developed for an asperity is then extended to evaluate the total
contact area and the contact load on the base of the apparent area.
The following assumptions are made in the present study.

1. There is an isotropic surface for roughness.
2. All asperities have the same radius of curvature near their

summits.
3. All asperity heights vary randomly.
4. The interactions between neighboring asperities on the same

surface are neglected.
5. Asperity deformations only occur during the contact pro-

cess; bulk deformation at the substrate level is not
considered.

Fig. 1 The schematic diagram of two contact surfaces with deformations
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The second assumption is needed because the GW model �4�
adopted in this study evaluates the contact parameters.

2.1 Contact Parameters at Elastic and Fully Plastic
Deformations. According to the Hertz theory, the elastic contact
area Ae, the elastic contact load Fe, and the average contact pres-
sure Pe, produced by a sphere with a radius of R in contact with a
flat, smooth plate with an elastic interference �, are given as �24�

Ae = �R� �2�

Fe =
4

3
ER1/2�3/2 �3�

Pe =
4

3

E

�
� �

R
�1/2

�4�

where E denotes effective Young’s modulus of two solid contact
surfaces �Surfaces 1 and 2� with Young’s moduli E1 and E2 and
the Poisson ratios �1 and �2, respectively. This can be stated as

1

E
=

1 − �1
2

E1
+

1 − �2
2

E2

In the fully plastic deformation regime, the asperity’s contact
area Ap, the contact load Fp, and the average contact pressure Pp
can be expressed as �24�

Ap = 2�R� �5�

Fp = HAp �6�

Pp = H �7�

where H is the hardness of the softer material of the two contact
solids.

2.2 Critical Interference and Contact Parameters in the
Elastoplastic Deformation Regime. The critical interference �c,
which marks the transition from the elastic deformation to the
elastoplastic deformation, is given by �25�

�c = ��KH

2E
�2

R �8�

where the maximum contact pressure factor K is related to the
Poisson ratio of the softer material �26� expressed as K=0.454
+0.41�.

Kogut and Etsion �27� used a finite element method to solve the
elastoplastic contact problem of a single asperity and found that
the entire elastoplastic regime extends over interference values in
the range 1�� /�c�110, with a distinct transition in the mean
contact pressure at � /�c=6. The asperity’s contact area Aep, the
contact load Fep, and the average contact pressure Pep in the elas-
toplastic deformation regime are presented in a dimensionless
form as �27�

Aep

�R�c
= a1� �

�c
�b1

�9�

Fep

2/3KH�R�c
= a2� �

�c
�b2

�10�

Pep

H/2.8
= a3� �

�c
�b3

�11�

where a1, b1, a2, b2, a3, and b3 are constants and are summarized
in distinct elastoplastic subregimes as follows.

�a� For the first elastoplastic regime �1�� /�c�6�,

a1 = 0.93, b1 = 1.136, a2 = 1.03, b2 = 1.425,

a3 = 1.19, b3 = 0.289

�b� For the second elastoplastic regime �6�� /�c�110�,

a1 = 0.94, b1 = 1.146, a2 = 1.40, b2 = 1.263,

a3 = 1.61, b3 = 0.117

2.3 Contact Load and Total Contact Area. The above
analyses developed for the three deformation regimes of one as-
perity can be applied to model the contact behavior of two rough
surfaces. Define N as the number of asperities on a nominal area
An, then the expected contact number n at a mean asperity sepa-
ration d is expressed as

n = N�
d

�

�g�z��ddz = �An�
d

�

�g�z��ddz �12�

where � denotes the area density of asperities and �g�z��d repre-
sents the probability density function of the asperity heights at a
mean asperity separation d. With the base model developed by
Kogut and Etsion �the KE model�, the following equations for the
total real contact area At and the contact load Ft for a given mean
asperity separation d are obtained using �28�

At�d� = Aet�d� + Aept�d� + Apt�d�

= �An	�
d

d+�c

Ae�g�z��ddz +�
d+�c

d+�p

Aep�g�z��ddz

+�
d+�p

�

Ap�g�z��ddz

= ��RAn	�

d

d+�c

��g�z��ddz

+ 0.93�c�
d+�c

d+6�c � �

�c
�1.136

�g�z��ddz

+ 0.94�c�
d+6�c

d+�p � �

�c
�1.146

�g�z��ddz + 2�
d+�p

�

��g�z��ddz

�13�

and

Ft�d� = Fet�d� + Fept�d� + Fpt�d�

= �An	�
d

d+�c

Fe�g�z��ddz +�
d+�c

d+�p

Fep�g�z��ddz

+�
d+�p

�

Fp�g�z��ddz

= �AnER1/2	4

3�
d

d+�c

�3/2�g�z��ddz

+ 1.373�c
3/2�

d+�c

d+6�c � �

�c
�1.425

�g�z��ddz

+ 1.867�c
3/2�

d+6�c

d+�p � �

�c
�1.263

�g�z��ddz

+
2�HR1/2

E �
d+�p

�

��g�z��ddz
 �14�

where �p denotes the interference corresponding to the inception
of the fully plastic deformation regime.

Equations �13� and �14� may be normalized by dividing An and
AnE, respectively. Furthermore, all the length parameters and vari-
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ables are normalized by dividing them by �, which is the rms
roughness of the surface height distribution. The resulting dimen-
sionless equations are given by

A
t
*�d*� =

At

An
= �	�

d*

d*+�
c
*

A
e
*�g�z*��d*dz*

+�
d*+�

c
*

d*+�
p
*

A
ep
* �g�z*��d*dz*�g�z��0dz

+�
d*+�

p
*

�

A
p
*�g�z*��d*dz*


= �		�
d*

d*+�
c
*
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where 	=��R; d* is the dimensionless mean asperity separation
based on surface heights.

2.4 Variations of the Non-Gaussian Probability Density
Function During the Loading Contact. The topographies ob-
tained from the experimental results of surface contacts at differ-
ent loads are generally no longer Gaussian distributions. Accord-
ing to the experimental results shown in the study of Othmani and
Kaminsky �22�, the surface asperities after the contacts of differ-
ent loads were found to satisfy a probability density function. The
equation for the probability density function g�z*� can be ex-
pressed as �29�

g�z*� = ye�1 +
z*

B1
�m1�1 −

z*

B2
�m2

− B1 
 z* 
 B2 �17�

where z* �=z /�� is defined as the dimensionless asperity height of
an undeformed asperity, as measured on the basis of the mean of

asperity heights. In Eq. �17�, m1, m2, B1, and B2 are obtained by
solving the following two equations �29�:

�m1 + 1�
B1

=
�m2 + 1�

B2
�18�

B1 + B2 =
1

2
�Sk2�r + 2�2 + 16�r + 1��1/2 �19�

where Sk in Eq. �19� denotes the skewness, which is the measure
of the asymmetry of the profile about the mean line; the r param-
eter is written as �29�

r =
6�Kt − Sk2 − 1�

�6 + 3Sk2 − 2Kt�
�20�

where the kurtosis Kt in Eq. �20� represents a measure of the
flatness of the roughness profile. The m1 and m2 values are given
by �29�

m1 =
1

2
r − 2 + r�r + 2�� Sk2

Sk2�r + 2�2 + 16�r + 1��
1/2�

�21a�

m2 =
1

2
r − 2 − r�r + 2�� Sk2

Sk2�r + 2�2 + 16�r + 1��
1/2�

�21b�

and ye in Eq. �17� is written as �29�

ye =
1

�B1 + B2�
�m1 + 1�m1�m2 + 1�m2

�m1 + m2 + 2�m1+m2

��m1 + m2 + 2�
��m1 + 1���m2 + 1�

�22�

where � is the gamma function. Once Sk and Kt are obtained, the
Gaussian or non-Gaussian probability density function g�z*� can
be determined. If the skewness and kurtosis are assumed to be
zero and 3, respectively �29�, Eq. �17� turns out to be a Gaussian
distribution. EDMs and turning operations produce positively
skewed surfaces, whereas milling, honing, and grinding produce
negatively skewed surfaces �15�. Hence, in the present study, it is
assumed that the initial value of Sk0 is varied from 0 to −0.8 and
the initial Kt0 value is fixed to be 3. It should be stressed that
unrestricted value of Kt0 can be chosen as the initial kurtosis, if
these two parameters �Sk0, Kt0� are satisfied by the integration of
the probability density function over the range of z* equal to 1.
Nevertheless, in the present study, these two parameters are no
longer set to be constant value, but are varied with the
interference.

The probability density function g�z*� adopted in the present
study, as Eq. �17� shows, is expressed as a function of the coeffi-
cients of ye, B1, B2, m1, and m2. These coefficients are further
expressed as a function of the skewness Sk and the kurtosis Kt.
Therefore, the probability density function can be determined only
when the kurtosis and the skewness are available. In the present
study, a method is developed such that the Sk and Kt parameters
are varied with the mean asperity separation under the condition
of either two contact surfaces under a constant load or a rough
surface after elastic recovery. In Eq. �17�, the upper bound of z* is
B2, whereas the lower bound of z* is −B1. The values of B1 and B2
are varied with the mean asperity separation, so they should sat-
isfy the integration of the non-Gaussian probability density func-
tion over the entire range of z* between −B1 and B2 being equal to
1 at any mean asperity separation. Prior to the occurrence of sur-
face contacts, the initial skewness Sk0 and the initial kurtosis Kt0
are given. The r parameter before surface contacts �r0� can thus be
determined by substituting the Sk0 and Kt0 values into Eq. �20�.
Similarly, the m1 and m2 values can also be obtained by substitut-
ing Sk0 and Kt0 into Eqs. �21a� and �21b� respectively, and then
these two algebraic equations are coupled together to solve �B1�0
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and �B2�0 by employing Eqs. �18� and �19�. Obviously, �−B1�0 and
�B2�0 are the lower and upper bounds of z* arising at the asperity
heights before surface contact. The lower and upper bounds of z*,
�−B1�0 and �B2�0, corresponding to the different initial skewness
Sk0 and the initial kurtosis Kt0 are shown in Table 1.

It should be mentioned that the �B1�0 and �B2�0 parameters are
strongly dependent on the initial values of skewness �Sk0� and
kurtosis �Kt0�. Since the lower bound of z*, �−B1�, represents the
lowest extreme value of surface asperity heights, it has a value
always smaller than the mean asperity heights. According to the
study of Zhao and Chang �30�, the asperity interactions can affect
the mean value of asperity heights. The displacement u of the
mean surface line defined for asperity heights can be expressed as
�30�

u = 1.12
�wlpm

E
�23�

where wl is the local contact load of an asperity and pm denotes
the global mean contact pressure. If the contact surface is steel,
Young’s modulus E=113 GPa and hardness H=1.96 GPa. The
mean contact pressure reaches fully plastic deformation when
pm=H. Under a relatively large load, the u parameter expressed in
a dimensionless form is evaluated to have a value of about 10−7,
which is still negligibly small compared to z* when the asperity
heights with contact deformations operate in a region larger than
the mean separation. Thus, the B1 value at any mean asperity
separation has a value almost equal to �B1�0 if contact deforma-
tions do not reach the lower bound of z*. However, the upper
bound of z* always varies with the mean asperity separation �d*�.
The upper bound �B2� will be equal to d* when the mean asperity
separation between two contact surfaces is d*. The probability
density function in the z* values greater than d* drops to zero.
Using Eq. �19�, the skewness parameter Sk can be expressed as a
function of B1, B2 and Kt and can be written as

Sk = �− y � �y2 − 4xz1

2x
�1/2

�24�

where

x = 36�B1 + B2�2 + 144

y = 24b�B1 + B2�2 − a2 − 4ab − 4b2 − 48a

z1 = 4b2�B1 + B2�2 − 16�ab + b2�

a = 6Kt − 6

b = 6 − 2Kt

Therefore, the Sk value can be determined if Kt is given. How-
ever, the genuine Kt and Sk values corresponding to a given mean
asperity separation are determined by the principle that the inte-
gration of the non-Gaussian probability density function over
−B1�z*�d* must be equal to 1. The method mentioned above
can thus be applied to find the non-Gaussian probability density
function g�z*�, and the skewness Sk and the kurtosis Kt evaluated

at various mean asperity separations �d*�, no matter what the ini-
tial values of the above three parameters are before contact.

2.5 Variations of the Non-Gaussian Probability Density
Function After Elastic Recovery. After the removal of the ap-
plied load of two contact surfaces, the elastic recovery of the
compressed surface might bring out a new asperity height distri-
bution on the rough surface. The non-Gaussian probability density
function after unloading and elastic recovery is quite different
from that obtained from surface contacts under a constant load. It
is totally dependent on the area magnitude beneath the initial
probability density function profile associated with the elastic de-
formation region. This area lies in the region between z*=d* and
z*=d*+�

c
*, where �

c
* denotes the critical interference beyond

which the elastoplastic deformation occurs. The critical interfer-
ence �

c
* of a rough surface is strongly related to the plasticity

index. The plasticity index �� in the study of Greenwood and
Williamson �4� is defined as

 = ��
c
* �

�s
�−0.5

=
2E

�KH
��

R
�1/2�1 −

3.717 � 10−4

	2 �1/4

�25�

where E denotes Young’s modulus, H denotes the hardness of a
material, K represents the maximum contact pressure factor �K
�0.57 for steel�, � represents the standard deviation of surface
asperities, and R denotes the mean radius of curvature of the ini-
tial surface asperities. The behavior of surface roughness can be
described as a function of 	�=��R� and � /R. These two param-
eters, adopted in this study, are given in the study of Nuri and
Halling �31�. By incorporating these two roughness parameters
and the mechanical properties, the initial surface roughnesses can
be characterized by the initial plasticity index. The initial plastic-
ity index, therefore, simply reflects the deformation possibility of
a rough surface when under contact. A rougher, softer surface, in
general, has a higher plasticity index. If �1.0, the surface in the
contact is apt to generate elastoplastic deformation. If 
0.6, the
surface is apt to have elastic deformation. Furthermore, it should
be mentioned that the plasticity index is unnecessary in evaluating
the contact parameters in the present model. According to Eq.
�25�,  is actually a variable because the � parameter in the plas-
ticity index is now varying with the mean asperity height evalu-
ated at different separations, rather than a constant value. The area
in the profile of the probability density function associated with
the elastic recovery of surface asperities has a direct relationship
with the plasticity index. The details on the use of this area to
determine the new probability density profile after the elastic re-
covery will be described in Sec. 3. All new roughness parameters,
such as the probability density function, the skewness, and the
kurtosis after elastic recovery, are achieved only when they are
available during surface contact under a constant load. The flow-
chart used to obtain these new roughness parameters is shown in
Fig. 2. In this flowchart, the subscript d in a parameter denotes the
behavior arising at surface contacts with a dimensionless mean
separation d* between these two surfaces, whereas the subscript u
denotes the behavior arising at the new surface after elastic recov-
ery.

3 Results and Discussion
The probability density function g�z*� of asperity heights in a

non-Gaussian form before contact deformations is determined by
the initial skewness Sk0 and the initial kurtosis Kt0 only. After
contact deformations, the skewness Sk and the kurtosis Kt no
longer remain unchanged, but vary with the interference formed
by a rigid, smooth surface in contact with a rough surface. Figure
3�a-1� shows the probability density function of asperity heights
before any contact deformation. The non-Gaussian g�z*� profile is
obtained by assuming Sk0=−0.2 and Kt0=3. The vertical line of
z*=1 is marked as an example to indicate the contact position of
the smooth, rigid surface under a normal load. Another vertical

Table 1 The initial values of B1 and B2 in Eq. „15… correspond-
ing to different initial values of skewness and kurtosis

�Sk0 ,Kt0� �B1�0 �B2�0

�−0.2,3� 16.136 6.136
�−0.4,3� 8 3
�−0.6,3� 5.257 1.923
�−0.8,3� 3.86 1.36
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line on the right-hand side of z*=1 is given to mark the border of
the elastic and elastoplastic deformation regimes. Therefore, the
z* region between these two vertical lines represents the elastic
deformation regime, and the asperity heights associated with this
regime are operating under elastic deformation.

The probability density function shown on the right-hand side
of the critical interface �d*=1� is then associated with
elastoplastic/plastic deformation. The elastic deformation regime
in the probability density function g�z*� is strongly dependent on
the initial plasticity index �0�. A small plasticity index implies
that the majority of microcontacts are apt to operate in elastic

deformation under a normal load. As Fig. 3�a-1� shows, the elastic
deformation regime corresponding to 0=0.5 is so wide that the
g�z*� profile for z*1 is almost entirely located in this regime. The
shadow area marked by straight lines beneath the g�z*� profile as
well as in the elastic deformation regime represents the “strain
energy” applicable to the elastic recovery. It is stored temporarily
when the smooth, rigid surface is pressed against the rough sur-
face at d*=1 under a constant normal load. Under this circum-
stance, the probability density function is changed to be the profile
marked by 3 in Fig. 3�b-1�. Since the area beneath the dotted
profile �Curve 2� is in a z* region narrower than that shown in the

Fig. 2 Flowchart for the numerical analyses of Sku and Ktu
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Fig. 3 „a… The probability density functions of surface asperi-
ties before contact deformation. The initial plasticity indices
are �0=0.5 and �0=2.0, respectively. The filled-in areas indicate
the “strain energy” available for the elastic recovery of the
rough surface after finishing the unloading process. „b… Varia-
tions of the probability density function for the surface con-
tacts under a normal load and the rough contact surface after
elastic recovery. The initial plasticity indices are also 0.5 and
2.0, respectively.
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noncontact Profile �Fig. 3�a-1�� the peak value of Curve 2 is sig-
nificantly elevated because the integration of the area beneath Pro-
file 3 must be equal to 1.

If the normal load is removed from two contact surfaces, the
strain energy stored in the specimen is then released in the form of
elastic recovery. The probability density function of surface as-
perities is changed again when the elastic recovery ends; the pro-
file is now marked by 3 in Fig. 3�b-1�. The right end of Curve 3 is
determined such that the shadow area beneath Curve 3, as well as
lying between z*=1, must be equal to the shadow area exhibited
in Fig. 3�a-1�. If the microcontacts are evaluated with an initial
plasticity index �0� of 0.75, the g�z*� curve marked by 3 �after
elastic recovery� is quite close to the original g�z*� before any
contact although the right end of Curve 3 is shorter compared with
that of Curve 1. However, the distinction between Curves 2 and 3
becomes quite significant in either the peak value or the right end
of the profile.

If the initial plasticity index �0� is elevated to 2.0, the regime
in the probability density function associated with the elastic de-
formation regime is significantly reduced �see Fig. 3�a-2��. The
regime related to the elastoplastic or the fully plastic regime is,
however, enlarged. In Fig. 3�a-2�, the shadow area denotes the
probability density function of surface asperities operating in the
elastic deformation regime. Due to the high initial plasticity index,
the shadow area in Fig. 3�a-2� is much smaller than that shown in
Fig. 3�a-1�.

When the surface asperities are compressed by a rigid, smooth
surface with a mean separation d*=1 between them, the profile of
the probability density function for the surface asperities under a
constant normal load is marked by 2 �dot curve� in Fig. 3�b-2�.
The profile marked by 3 is, however, the consequence of surface
asperities after the elastic recovery. Because of the small shadow
area associated with the elastic regime, the profile of the probabil-
ity density function for the contact surface after the elastic recov-
ery is quite similar to the profile obtained from the contacts under
a constant load, except for the profile in the region near their
peaks. However, the profile of the probability density function
either after the elastic recovery or under a constant load becomes
much steeper compared with the g�z*� profile of a noncontact
rough surface. The profile of the g�z*� function becomes steep and
sharp as the d* value decreases to a sufficiently small value. When
d*
0.5, the calculation of integrating g�z*� is hard to converge
unless the error tolerance is enlarged. If the tolerance is loosened,
the behavior of the integration of g�z*� demonstrated in the case
of d*
0.5 shows a big difference in its characteristic from that
demonstrated in the case of d*�0.5. Therefore, the lower bound
of d* was set to be 0.5 in the present study.

Apart from the initial skewness �Sk0� and initial kurtosis �Kt0�,
the mean separation between two contact surfaces is also an im-
portant factor in the variations of g�z*�. Figure 4�a� shows the
g�z*� results evaluated at different separations; the initial skew-
ness is −0.2 and the initial kurtosis is 3. The final skewness and
kurtosis evaluated at different separations �d*� are also given for
each profile. These results were predicted using the present model
undergoing a constant load. The g�z*� profile becomes thin and
sharp in appearance as the mean separation �d*� becomes small.

The initial plasticity index should be specified in order to obtain
the solution of g�z*� for the surface asperities after the elastic
recovery. The g�z*� profiles in Fig. 4�b� were obtained after the
elastic recovery as well as at different separations; they are the
results corresponding to 0=0.5, Sk0=−0.2, and Kt0=3. Due to a
small value of 0, the behavior of the elastic deformation is domi-
nant at different mean separations. Therefore, the g�z*� profiles
for the surface asperities after elastic recovery are very similar
although they were evaluated at different mean separations. The
results in Fig. 4�b� demonstrate that the g�z*� profile becomes
slightly thinner and higher at the peak value when the mean sepa-

ration �d*� becomes small. Figure 4�c� shows the g�z*� profile
obtained from the deformed surface after the elastic recovery; the
initial plasticity index was elevated to 2.0. The profiles of this
figure and those shown in Fig. 4�b� have significant difference.
However, the similarities of the profiles shown in Figs. 4�a� and

Fig. 4 The probability density functions evaluated at different
mean separations for „a… the surface contacts under a normal
load; „b… the rough contact surface with a plasticity index of
0.5, which is obtained after elastic recovery; and „c… the rough
contact surface with a plasticity index of 2.0, which is obtained
after elastic recovery
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4�c� are quite high, revealing that elastic recovery is weakened
substantially by increasing the initial plasticity index �0� of the
rough surface.

The topography of the rough surface will be changed when two
surfaces are subjected to contact deformations. The skewness �Sk�
and kurtosis �Kt� parameters in the non-Gaussian probability den-
sity function vary with the mean separation of two contact sur-
faces. In the present study, these two parameters can be evaluated
under the condition of either two contact surfaces under a constant
load or the rough surface after elastic recovery. The results of the
skewness and kurtosis parameters for the condition of two contact
surfaces under various constant loads are shown in Figs. 5�a� and
5�b�, respectively. The solutions of the skewness parameter vary-
ing with the mean separation were evaluated for four �Sk0,Kt0�
sets. The skewness parameter generally has a negative value; its
magnitude is lowered by decreasing the dimensionless contact
load. The initial kurtosis in the figure was set to be a constant

value �Kt0=3�, but the initial skewness �Sk0� varied in a range of
−0.2 to −0.8. The position of the right end of a g�z*� profile is
governed by the negative magnitude of the initial skewness. In the
case of Sk0=−0.2, the right end point of g�z*� extends to a large,
positive z* value. Therefore, the skewness value evaluated at a
small dimensionless load can still be obtained. At small contact
loads, the skewness curve is asymptotic to a constant value. If the
Sk0 value is changed to −0.8, the entire g�z*� profile is shifted
leftward such that the z* value corresponding to its right end point
becomes small. Therefore, the Sk curve corresponding to Sk0=
−0.8 is present only in a small range of contact loads. By fixing
the contact loads of two surfaces, the negative magnitude of Sk
for the surface contacts under a constant load is lowered by in-
creasing the initial skewness �Sk0� of the rough surface.

As Fig. 5�b� shows, the behavior of kurtosis �Kt� due to the
change in the dimensionless contact load �F

t
*� is exactly opposite

Fig. 5 Variations of „a… the skewness „Sk… and „b… the kurtosis „Kt… with the
dimensionless contact load for the contact surfaces under a constant normal
load. These data were evaluated by changing the initial skewness „Sk0… only;
the initial kurtosis „Kt0… was fixed at 3.
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to that demonstrated in the skewness parameter. If the initial val-
ues of Sk0 and Kt0 are given, the Kt value evaluated for the
surface contacts under a constant normal load is lowered by de-
creasing the contact load of two contact surface. In the figure, the
initial kurtosis �Kt0� was set to be 3. The kurtosis value evaluated
at the same contact load is lowered by increasing the negative
magnitude of the initial skewness �Sk0�.

The skewness and kurtosis results obtained after elastic recov-
ery from a rough surface with a plasticity index 0=0.5 are shown
in Figs. 6�a-1� and 6�b-1�, respectively. The initial conditions of
the skewness and the kurtosis are exactly the same as those given
in Fig. 6. In Fig. 6�a-1�, the behavior exhibited in the skewness
parameter is somewhat different from that demonstrated in Fig.
5�a�. If the initial skewness �Sk0� and kurtosis �Kt0� are fixed, the
skewness �Sk� after elastic recovery, varying with the contact
load, shows the same behavior as that shown in Fig. 5�a�. How-
ever, the effect of the initial skewness �Sk0� magnitude on the
skewness �Sk� after elastic recovery is exactly opposite to the
effect on the skewness �Sk� created at the contact of a constant
load if they are evaluated at the dimensionless contact load �F

t
*�.

This feature is related to the magnitude of the plasticity index 0.
A relatively high possibility of elastic recovery generally occurs at
the contact surface with a small 0. In addition, the degree of the
elastic recovery corresponding to a surface with a small initial
skewness �Sk0� is always higher than that exhibited in a surface
with a large initial skewness �Sk0�. The combined effect of a small
plasticity index and a surface with a small initial skewness �Sk0�
makes the skewness �Sk� �negative magnitude� after the elastic
recovery be overtaken by the combined effect of the same plas-
ticity index and a large initial skewness. The involvement of the
elastic recovery is obviously the main cause of the contrasting
behavior of Figs. 5�a� and 6�a-1�.

The kurtosis results obtained from the rough contact surface
after the elastic recovery are shown in Fig. 6�b-1�. The behavior
demonstrated in this figure, as to the changes in the initial skew-
ness �Sk0� and the contact load, is similar to that shown in Fig.
5�b�, except that the magnitude of Kt shown in Fig. 6�b-1� is much
smaller than that shown in Fig. 5�b� if they are evaluated at the
same �F

t
*�. Significant differences in magnitude between Figs.

5�b� and 6�b-1� at large �F
t
*� values can be attributed to the sur-

face having a small plasticity index �0=0.5� and thus a high
elastic recovery. A strong elastic recovery makes the kurtosis val-
ues �Kt� corresponding to different Sk0 values vary in a narrow
range �from about 3.0 to 3.4�.

The plasticity index 0 is an influential factor to the skewness
and kurtosis of surface asperities after elastic recovery. Figures
6�a-2� and 6�b-2� show the results of the skewness and kurtosis
predicted by 0=2.0, respectively. A large 0 value means a rough
surface with a characteristic that only a small portion of the entire
probability density function is related to the elastic recovery.
Therefore, the difference in the magnitude between the skewness
during the contact of a constant load �see Fig. 5�a�� and the skew-
ness obtained after the elastic recovery �see Fig. 6�a-2�� is rather
limited. At a fixed dimensionless contact load �F

t
*�, the skewness

of a rough surface after the elastic recovery is lowered by increas-
ing the initial skewness. This feature is similar to that demon-
strated in the contacts under a constant normal load, but is exactly
opposite to the behavior shown in Fig. 6�a-1� for 0=0.5. Figure
6�b-2� shows the kurtosis results evaluated at various dimension-
less contact loads. Due to its small effect on the elastic recovery,
the behavior and magnitude exhibited in the kurtosis parameter
are quite similar to those shown in the contact under a constant
normal load.

Figures 7�a-1� and 7�b-1� show the contact loads obtained using
the model, of constant-skewness and constant-kurtosis assump-
tions and the present model, respectively, evaluated at various
mean separations. There are great differences between these two
figures. The initial plasticity index �0� in each of these two fig-

ures is fixed at a value of 0.5. If constant skewness and constant
kurtosis are assumed for the asperity heights �see Fig. 7�a-1��,
significant differences in the contact load due to the difference in
the initial skewness �Sk0� are present in the region of large mean
separations �d*�. As the mean surface separation decreases, the

Fig. 6 Variations of „a… the skewness „Sk… and „b… the kurtosis
„Kt… with the dimensionless contact load for the contact sur-
faces after completing the elastic recovery. These data were
evaluated by changing the initial skewness „Sk0… only; the ini-
tial kurtosis „Kt0… was fixed at 3, and the initial plasticity indices
used in the evaluation were 0.5 and 2.0, respectively.

031015-10 / Vol. 75, MAY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



differences among these five contact loads are also decreased. The
differences become negligibly small when the mean separation
�d*� is lowered to a sufficiently small value. This behavior implies
that the contact behavior arising at a sufficiently small mean sur-
face separation is little dependent on the initial skewness and kur-

tosis of asperity heights. Nevertheless, the contact load predicted
by a large initial �negative� skewness is always smaller than the
contact load with a small initial �negative� skewness if they are
evaluated at the same mean surface separation. As Fig. 7�b-1�
shows, the magnitude sequence of the contact loads shown in
large mean separation is opposite to the behavior exhibited in
small mean separations. In the region of large mean separations,
the load sequence shows that �F

t
*�Sk0=0� �F

t
*�Sk0=−0.2

� �F
t
*�Sk0=−0.4� �F

t
*�Sk0=−0.6� �F

t
*�Sk0=−0.8. Conversely, the load

sequence for mean separations varying in the range of about 1–3
shows that �F

t
*�Sk0=0
 �F

t
*�Sk0=−0.2
 �F

t
*�Sk0=−0.4
 �F

t
*�Sk0=−0.6


 �F
t
*�Sk0=−0.8. Nevertheless, the contact load evaluations based on

these five initial skewnesses are almost asymptotic to the same
constant value as the mean separation �d*� is further reduced to a
value smaller than 3. A constant contact load can be interpreted as
the contact surfaces at a sufficiently small mean separation show-
ing the same topography, making it independent of the initial
skewness. The results in Fig. 7�a-1� show that the influence of the
initial skewness on the contact load is significant only in the re-
gion of sufficiently large mean separations. The results in Fig.
7�b-1�, however, show that the significance of the initial skewness
on the contact load solution is enhanced as the mean separation is
reduced to be sufficiently small. In the region of large mean sepa-
rations, the differences in the contact load among these differences
in the initial skewness are substantially narrowed when the
present model is applied.

Figures 7�a-2� and 7�b-2� show the contact load solutions ob-
tained under the same conditions, except for the plasticity index.
The behavior demonstrated in Figs. 7�a-2� and 7�b-2� is basically
similar to that exhibited in Figs. 7�a-1� and 7�b-1�, respectively.
However, the magnitudes of contact load shown at the same mean
surface separation give the sequence �F

t
*�=0.5
 �F

t
*�=2.0 if they

are obtained in the subregion of small mean separations; however,
the sequence �F

t
*�=0.5� �F

t
*�=2.0 is obtained in the subregion of

large mean separations.
Figure 8�a� shows the contact load-area relationships evaluated

at five different initial skewnesses; the initial plasticity index �0�
applied in these evaluations is given a value of 0.5. The results in
this figure were obtained by assuming constant skewness as well
as constant kurtosis over the entire mean surface separation. Un-
der the condition of having the same contact load, the contact
areas with different values of the skewness of asperity heights
show the sequence �A

t
*�Sk0=0
 �A

t
*�Sk0=−0.2
 �A

t
*�Sk0=−0.4


 �A
t
*�Sk0=−0.6
 �A

t
*�Sk0=−0.8. If the contact area results are evalu-

ated using the present model, the behavior demonstrated in the
contact area sequence due to the change in the initial skewness, as
Fig. 8�b� shows, is the same as that shown in Fig. 8�a� if the
contact load is fixed. However, the influence of different initial
skewnesses on the contact load or the contact area exhibited in the
present model is obviously smaller than that exhibited in the case
of assuming constant skewness and constant kurtosis.

4 Conclusions
The probability density function �g�z*�� of surface asperities

strongly depends on the evaluations under the condition of either
the surface contacts under a normal load or a surface obtained
after elastic recovery. The initial skewness �Sk0� and the initial
kurtosis �Kt0� are the governing factors as to the probability den-
sity function formed under a normal load as well as at a fixed
mean separation, whereas the initial skewness and kurtosis and the
plasticity index �0� are the governing factors of the g�z*� func-
tion defined for a surface after elastic recovery. The g�z*� profile
is quite sharp in appearance and has a large value at its peak if it
is obtained from the surface contacts under a constant normal
load. The g�z*� profile obtained from the contact surface after
elastic recovery is, however, dependent on the plasticity index
�0� of the rough surface. The g�z*� profile defined for the contact

Fig. 7 Variations of the dimensionless contact load with the
dimensionless mean surface separation. They are presented
based on different skewness and kurtosis values before the
roughness surface contacts. „a… Probability density functions
g„z*… are invariant. „b… Probability density functions g„z*… are
varied with dimensionless mean separation d*. The initial plas-
ticity indices used in the evaluation were 0.5 and 2.0,
respectively.
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surface after elastic recovery is similar to the g�z*� profile before
experiencing contact deformations if the plasticity index is as-
sumed to be small. However, the g�z*� profile for the contact
surface after elastic recovery is similar to the g�z*� profile shown
in the contacts under a normal constant load if a large plasticity
index is assumed.

For the contact surface after elastic recovery, the influence of
the mean separation of two contact surfaces on the g�z*� function
is governed by the plasticity index �0� of the rough surface. The
g�z*� profiles obtained at different mean separations are quite
close if a small 0 is assumed. However, the g�z*� profiles ob-
tained at different mean separations vary significantly if a large 0
is given. Big differences were found between the g�z*� function
defined for the rough surface before any contact and the g�z*�
function given for the contact surface after elastic recovery. These
differences are enlarged by decreasing the mean separation.

The skewness �Sk� and the kurtosis �Kt� in the probability den-
sity function �g�z*�� are expressed as a function of the initial
skewness �Sk0�, the initial kurtosis �Kt0�, and the mean separation
�d*� of two contact surfaces if they are evaluated under a constant
normal load. Apart from the above three factors, the plasticity
index 0 is needed if Sk and Kt are evaluated for the contact

surface after elastic recovery. If Sk0 and Kt0 are fixed in the evalu-
ations, the skewness �Sk� is elevated by decreasing the contact
load, and the kurtosis �Kt� is lowered by decreasing the contact
load, no matter whether they are obtained at the condition of
surface contacts under a constant normal load or the contact sur-
face after the elastic recovery.

Comparison of the results predicted by the model of a single
probability density function over the given interference and the
present model reveals that both the contact load and the total
contact area are overestimated if the model of a single probability
density function is applied.

Nomenclature
a � contact area of an asperity
A � real area of contact

An � apparent area
d � separation based on asperity heights
E � effective Young’s modulus
F � contact load
g � probability density function of asperity heights
h � separation based on surface heights
H � hardness of the softer material
K � maximum contact pressure factor

Kt � kurtosis
N � total number of asperities
P � mean contact pressure
R � radius of curvature of an asperity

Sk � skewness
ys � distance between the mean of asperity heights

and that of surface heights
z � height of asperity measured from the mean of

asperity heights
� � area density of asperities
� � interference
� � standard deviation of surface height

�s � standard deviation of asperity height
� � Poisson’s ratio
 � plasticity index

Subscripts
0 � initial value before asperity deformation occurs
u � properties corresponding to the rough surfaces

after elastic recovery
d � properties corresponding to the rough surfaces

on loading when the mean separation is d
c � critical value at the point of initial yield
e � elastic deformation

ep � elastoplastic deformation
p � fully plastic deformation
t � total summation

* � dimensionless
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Extended Green’s Solution for the
Stresses in an Infinite Plate With
Two Equal or Unequal Circular
Holes
The distribution of stress in an isotropic and infinitely large plate perforated by circular
holes has long attracted attention from both mathematical and engineering standpoints.
Unfortunately, almost all existing solutions are only applicable to stress-free conditions
at the boundary of the holes, which is not always the case in engineering applications. In
an attempt to cover a wider range of applications, this paper presents the exact explicit
solution for the stress distribution in an infinite plate containing two equal/unequal
circular holes subjected to general in-plane stresses at infinity and internal pressures
inside the holes, following the approach proposed by Green (1940, “General Bi-
Harmonic Analysis for a Plate Containing Circular Holes,” Proc. R. Soc. London, Ser. A,
176(964), pp. 121–139). The newly derived general solution has been verified not only
with published solutions for special cases but also qualitatively with a comparable ex-
perimental testing program. In addition, some numerical examples are also provided to
offer insight into the complexity of the interplay of parameters.
�DOI: 10.1115/1.2793803�

Keywords: infinite plate, infinite plane, stress distribution, circular holes, elasticity, ana-
lytical solution

Introduction
The distribution of stress in an infinitely large plate perforated

by circular holes has been studied by many investigators through
different approaches. In 1921, Jeffery �1� pioneered the theory for
plane stress and plane strain in bipolar coordinates, which was
used by Ling �2� in 1948 to solve the problem of an infinite plate
containing two equal circular holes under general far-field
stresses. In 1980, Iwaki and Miyao �3� expanded Ling’s solution
to two unequal holes in an infinite plate under far-field tension and
internal pressure or uniform shear on the walls of the holes. For
more than two equal circular holes, Howland and Knight �4�
solved a class of periodic configurations in 1939, taking advantage
of the invariance of some coordinate transformations. One year
later, Green �5� discovered a general method using coordinate
transformation to calculate the stress distribution in an infinitely
large plate containing any number of holes of any size under
stresses applied at infinity. Although Green’s solution is analyti-
cally powerful, it was not accompanied by many numerical ex-
amples and results because of the limits of the computational
power of the day. The conformal mapping technique was also

used successfully by Haddon �6� to solve for two equal/unequal
holes under uniaxial tension. The Schwarz alternating method of
successive approximations has also been used successfully by
Ting et al. �7�, Ukadgaonker and Patil �8�, and many others to
solve for various configurations. A comprehensive treatise on the
subject was compiled by Savin �9� in 1961. Unfortunately, except
for the work of Iwaki and Miyao �3�, all of the existing exact
solutions are only applicable to stress-free conditions at the
boundaries of the holes, which is not always the case in engineer-
ing problems. In an attempt to cover a wider range of applications,
this paper seeks the closed-form solution to the problem of an
infinite plate perforated by two equal/unequal circular holes sub-
jected to general in-plane stresses at infinity and internal pressures
inside the holes. Potential applications of the solution range from
the classical structural integrity analysis of perforated plates, con-
nections of cylindrical pipes to a large cylindrical pressure vessel,
all the way to the stability analysis for multilateral junctions. Al-
though only pressure is considered for the boundary conditions in
this study, the method can be readily extended to other boundary
conditions by minor changes as discussed in the Solution Method
section.

Problem Description
A schematic of the problem is presented in Fig. 1. The two

circular holes have centers O1 and O2, and radii a1 and a2, respec-
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tively. The distance from center to center between the holes is
denoted as h. The pressures inside the holes are denoted by P1 and
P2. S1 and S2 are the applied major and minor principal stresses at
infinity; � is the angle S1 makes with the center-to-center line. A
local right-handed Cartesian coordinate system is attached to each
hole, with the origin coincides with the center of the hole, and the
x-axis aligned along the center-to-center line with positive direc-
tion pointing toward the other hole, as shown in Fig. 1. A local
polar coordinate system is also attached to each hole. Nondimen-
sional polar coordinates and important nondimensional parameters
are defined as follows:

�1 =
r1

h
�2 =

r2

h
�1�

�1 =
a1

h
�2 =

a2

h
�2�

The solution method is presented next using a notation similar to
Green’s �5�.

Solution Method
If there were no holes in the plate, the stresses could be derived

from an Airy stress function �0. To account for the effects of the
two holes, an additional set of Airy stress functions is added for
each hole. These stress functions must produce zero stresses at
infinity and single-valued stresses and displacements everywhere
on the plate. The resultant stress function is expanded around each
hole. Stresses are then derived and unknown coefficients are cal-
culated using boundary conditions.

The given in-situ stresses are decomposed into components Sxx,
Syy, and Sxy. Using the compression positive convention, the Airy
stress function �0 for Hole 1 is then represented as follows:

�0 = h2�P1�1
2 ln �1 + P2�2

2 ln �2 +
Sxx

2
�1

2 sin2 �1 +
Syy

2
�1

2 cos2 �1

+
Sxy

2
�1

2 sin 2�1� �3�

The additional Airy stress functions must produce zero stresses at
infinity and single-valued stresses and displacements. They are
therefore of the form

ln �

�

�−n cos n� for n = 1,2, . . .

�−n sin n� for n = 1,2, . . .

�−n cos�n + 2�� for n = 0,1,2, . . .

�−n sin�n + 2�� for n = 0,1,2, . . .

The additional set of stress functions for Hole 1 is a linear com-
bination of the preceding functions.

�1 = 1A0 ln �1 + 1B0�1 + �
n=1

�

�1An�1
−n cos n�1 + 1Bn�1

−n sin n�1�

+ �
n=0

�

�1Cn�1
−n cos�n + 2��1 + 1Dn�1

−n sin�n + 2��1� �4�

The additional stress function for Hole 2 is obtained similarly,

�2 = 2A0 ln �2 + 2B0�2 + �
n=1

�

�2An�2
−n cos n�2 + 2Bn�2

−n sin n�2�

+ �
n=0

�

�2Cn�2
−n cos�n + 2��2 + 2Dn�2

−n sin�n + 2��2� �5�

where 1An, 1Bn, 1Cn, 1Dn, 2An, 2Bn, 2Cn, and 2Dn �n
=0,1 ,2 , . . . � are coefficients determined from boundary condi-
tions.

The final Airy stress function for the full solution is the super-
position of individual Airy stress functions,

� f = �0 + �1 + �2 �6�

This function can be expressed in terms of �1 and �1 using coor-
dinate transformation formulas presented in Appendix A. The
stresses around Hole 1 are then derived as follows:

�rr =
1

h2� 1

�1

�� f

��1
+

1

�1
2

�2� f

��1
2 	 �7�

��� =
1

h2

�2� f

��1
2 �8�

�r� = −
1

h2

�

��1
� 1

�1

�� f

��1
	 �9�

The boundary conditions at infinity are automatically satisfied. At
the boundary of Hole 1, the radial stress must equal the applied
pressure and the shear stress must vanish.


�rr
�1=�1
= P1 �10�


�r�
�1=�1
= 0 �11�

Similarly, the final Airy stress function � f can be expressed in
terms of �2 and �2. The stresses for Hole 2 are derived using
equations similar to Eqs. �7�–�9�. The boundary conditions at the
boundary of Hole 2 are as follows:


�rr
�2=�2
= P2 �12�


�r�
�2=�2
= 0 �13�

Equations �10�–�13� are solved simultaneously for the coefficients
1An, 1Bn, 1Cn, 1Dn, 2An, 2Bn, 2Cn, and 2Dn. Detailed derivation is
presented in Appendix B. Although this solution covers only the
boundary condition of internal pressures inside the holes, its
method can be readily applied to other boundary conditions by
using the appropriate function �0 and modifying the boundary
equations �10�–�13�.

Theoretical Verification

Equal Holes. The analytical solution for an infinite plate with
two equal circular holes under general plane stresses has been
derived by Ling �2� in 1948. Ling’s solution can be regarded as a
special case when both pressures are zero and when both circular
holes are of equal size. Tables 1 and 2 show that the two solutions

Fig. 1 Problem setup
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yield identical results for the tangential stress at the hole bound-
ary. It is also evident from the last line of Table 2 that the newly
derived solution converges to classical Kirsch’s solution �10� for a
single hole when the two holes are very far apart.

Ling �2� also provides tangential stress concentration factors
when the two circular holes are tangential to each other. Unfortu-
nately, those factors cannot be verified because the series in the
newly derived solution do not converge when the two holes are
tangential. However, this limitation does not hinder the applica-
tion because tangential holes are physically impossible.

Bargui and Abousleiman �11� have also investigated Ling’s so-
lution for the tangential stress distribution at the boundary of the
holes for different states of nonhydrostatic applied stress. Figure 2
shows the stress distribution for seven different stress anisotro-
pies. The results are identical to those from Bargui and Abousle-
iman �11�.

Unequal Holes. The analytical solution for an infinite plane
with two unequal circular holes under uniaxial plane-stress load-
ing has been derived by Haddon �6� using a conformal mapping
technique. Haddon’s solution applies when there is no pressure
inside the holes and when one principal stress at infinity is zero.
Table 3 shows that the two solutions yield identical results for the
tangential stress at the hole boundary for 44 /48 locations. Minor
differences in the third decimal place at the other four locations
could be because Haddon reportedly used an accuracy of 10−4

while the new results were calculated with an accuracy of 10−6

before rounding off for comparison.
The solution for two unequal holes under uniaxial tension at

infinity, internal pressure, or uniform shear on the boundary of one
hole has also been derived by Iwaki and Miyao �3� in 1980 using
bipolar coordinates. Figure 3 shows the maximum tangential
stress on the boundary of the holes obtained from the newly de-
rived solution when there is only internal pressure inside Hole 2.
The results are consistent with those reported by Iwaki and Miyao
�3�. Iwaki and Miyao’s solution is equivalent to the newly derived
solution but cannot be extended to more than two circular holes in
the plane. On the other hand, this solution method can be ex-
tended to cover any number of holes of any size, as shown origi-
nally by Green �5� in 1940.

Experimental Validation
To date, mechanical stability of a multilateral junction is still

one of the most challenging problems in the petroleum industry. A
multilateral well consists of a main or a mother wellbore with one
or more deviating wellbore branches. These laterals or secondary
wellbores are drilled to enhance the well productivity by increas-
ing the drainage area and/or producing from isolated formations.
Due to geomechanical effects, the second or even the main well-
bore can be lost during drilling, completion, or production, lead-
ing to enormous losses and delays in production schedule. Due to
the small angle between the two wellbores, the multilateral junc-
tion problem has been commonly modeled using two circular
holes in an infinite plane, assuming that the plane-strain condition
prevails �11,12�. Applied stresses include overburden stress, far-
field horizontal principal stresses, and mud pressures inside the
wellbores.

Papanastasiou et al. �13,14� have conducted a laboratory testing
program on multilateral junctions. Figure 4 shows the breakout
shapes they obtained.

Experiment 2 is expected to yield the same results as Experi-
ment 1. Experiment 6 involves only a single borehole; therefore, it
is not relevant to this study. Based on the data supplied by Papa-
nastasiou et al. �13,14�, the following configuration is used to
verify Experiments 1and 3–5:

a1 = 18.5 mm

a2 = 15.5 mm

h = 44 mm

Figures 5–8 demonstrate the corresponding distribution of major
principal stress simulating the aforementioned experiments. The
experimental results are not accurate enough to make quantitative
comparison. However, the stress distributions generated using the
newly derived solution show excellent qualitative agreement with
the reported breakout shapes.

Table 1 Ling’s †2‡ tangential stress at the borehole wall. � is defined as the ratio of the center-
to-center distance and the diameter

Ling’s
�

SH=Sh=1, �=0 deg
SH=1, Sh=0, �=0 deg

�= �90 deg

SH=1, Sh=0, �=90 deg

�=0 deg �=180 deg �=0 deg �=180 deg

1.5 2.255 2.887 2.623 3.151 3.264
2 2.158 2.411 2.703 3.066 3.020
3 2.080 2.155 2.825 3.020 2.992
5 2.033 2.049 2.927 3.004 2.997
8 2.014 2.018 2.970 3.001 2.999

Infinity 2.000 2.000 3.000 3.000 3.000

Table 2 New solution shows identical results to Ling’s solution

h
�a1=a2=1�

SH=Sh=1, �=0 deg
SH=1, Sh=0, �=0 deg

�= �90 deg

SH=1, Sh=0, �=90 deg

�=0 deg �=180 deg �=0 deg �=180 deg

3 2.255 2.887 2.623 3.151 3.264
4 2.158 2.411 2.703 3.066 3.020
6 2.080 2.155 2.825 3.020 2.992

10 2.033 2.049 2.927 3.004 2.997
16 2.014 2.018 2.970 3.001 2.999

200 2.000 2.000 3.000 3.000 3.000
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Numerical Results
A simple example is investigated to demonstrate the new solu-

tion. The parameters are selected as follows: S1=1, S2=0.8, P1

= P2=0.2, and a1=1. Only the distribution of tangential stress at
the boundary of the holes is presented because this is the most
important stress at the most critical locations.

Effects of Orientation of the Stress Field. Consider two holes
of equal size, namely, a2=1. Four orientations of the stress field
are investigated: �=0 deg, �=30 deg, �=60 deg, and �=90 deg.
The first orientation implies that the center-to-center line aligns
with the maximum principal stress. The last case applies when the
center-to-center line aligns with the minimum principal stress. The
other two cases consider intermediate orientations.

Because of symmetry, the two holes have the same stress dis-
tribution. Figure 9 shows the tangential stress at the boundary of
either hole for �=0 deg for various separation distances of 0.2,
0.5, 1.0, and 2.0. The corresponding center-to-center distances are
2.2, 2.5, 3.0, and 4.0, respectively. The solution for a single hole is
also presented as the base line for comparison. Interestingly, h

Fig. 2 Tangential stress at the boundary of either hole for dif-
ferent stress anisotropy „Ling’s solution for �=1.20…, identical
to the results by Bargui and Abousleiman †11‡

Table 3 Comparison with Haddon’s solution †6‡. The param-
eters are h=4.5, a1=2.5, a2=1, Smax=1, Smin=0, P1=P2=0, and
�=45 deg. Differing results are highlighted

�
�deg�

Tangential stress, Hole 1 Tangential stress, Hole 2

Haddon
Hoang and

Abousleiman Haddon
Hoang and

Abousleiman

0 1.273 1.272 2.089 2.089
15 −0.694 −0.694 −0.067 −0.067
30 −0.711 −0.711 −1.563 −1.563
45 −0.710 −0.710 −1.932 −1.932
60 −0.464 −0.464 −1.335 −1.335
75 0.207 0.207 −0.137 −0.137
90 1.159 1.159 1.283 1.283

105 2.128 2.128 2.585 2.585
120 2.840 2.840 3.489 3.489
135 3.092 3.092 3.812 3.812
150 2.811 2.811 3.501 3.501
165 2.065 2.065 2.639 2.638
180 1.049 1.049 1.432 1.432
195 0.029 0.029 0.159 0.159
210 −0.728 −0.728 −0.902 −0.902
225 −1.030 −1.030 −1.531 −1.531
240 −0.808 −0.808 −1.618 −1.618
255 −0.138 −0.138 −1.170 −1.170
270 0.770 0.776 −0.282 −0.282
285 1.667 1.667 0.900 0.900
300 2.289 2.289 2.209 2.209
315 2.577 2.577 3.408 3.408
330 2.862 2.862 4.101 4.101
345 3.262 3.262 3.736 3.735

Fig. 3 Maximum tangential stress at the boundary of the holes
when only Hole 2 is pressurized „identical to the results by
Iwaki and Miyao †3‡…

Fig. 4 Sketch of breakout shapes. Reproduced from Papanas-
tasiou et al. †13,14‡
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=4.0 and h=3.0 yield lower stress concentration factors compared
to the single-hole solution. In other words, the maximum tangen-
tial stress at the hole boundary does not always increase with
decreasing separation distance between the holes. As the separa-
tion distance decreases, the maximum initially at �=90 deg drifts
away from the other hole �toward �=180 deg�. High stress con-
centration also starts to develop around �=0 deg. For separation
distances smaller than approximately 1, the area around �
=0 deg becomes the critical region. For a separation distance of

Fig. 9 Tangential stress at the boundary of either hole for a1
=a2=1, S1=1, S2=0.8, �=0 deg, P1=P2=0.2

Fig. 10 Tangential stress at the boundary of either hole for
a1=a2=1, S1=1, S2=0.8, �=30 deg, P1=P2=0.2

Fig. 5 Distribution of major principal stress reproducing the
stress pattern in Fig. 4, Experiment 1: SH=1, Sh=1, �=0 deg,
P1=P2=0

Fig. 6 Distribution of major principal stress reproducing the
stress pattern in Fig. 4, Experiment 3: SH=1, Sh=0.6, �
=90 deg, P1=P2=0

Fig. 7 Distribution of major principal stress reproducing the
stress pattern in Fig. 4, Experiment 4: SH=1, Sh=0.6, �
=45 deg, P1=P2=0

Fig. 8 Distribution of major principal stress reproducing the
stress pattern in Fig. 4, Experiment 5: SH=1, Sh=0.6, �=0 deg,
P1=P2=0
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0.5 �h=2.5�, the maximum tangential stress at the boundary is
15.9% higher than the maximum value of 2 for the single-hole
solution. For h=2.2, the maximum tangential stress increases by
67.2%.

Figure 10 demonstrates the tangential stress at the boundary of
either hole for �=30 deg for the same set of separation distances.
The maximum stress initially at �=90 deg moves toward �
=180 deg and increases in magnitude. At the same time, the maxi-
mum value initially at �=270 deg moves toward �=0 deg. The
variation of stress distribution around �=270 deg is very complex.
For any of the separation distances considered, the maximum tan-
gential stress at the boundary of the holes for �=30 deg is always
higher than that for �=0 deg. For instance, with h=2.5, the maxi-
mum value is 36.5% higher compared to the case of a single hole.
For h=2.2, the increase in maximum tangential stress is 93.7%.

Figure 11 illustrates the stress distribution for �=60 deg, with
even higher stress concentration than for �=30 deg. When h
=2.5, the maximum tangential stress at the boundary increases
57.7% compared to that of a single hole. For a separation distance
of 0.2, the maximum value reaches 126.2% higher than that of the
single-hole solution.

The case of �=90 deg is presented in Fig. 12. The maximum
tangential stress at the hole boundary is at �=0 deg for all sepa-
ration distances considered. For a separation distance of 0.5, the
maximum value increases by 60.0% compared to the case of a
single hole. For a separation distance of 0.2, the corresponding
figure is 134.7%.

In short, the stress distribution varies significantly with the ori-
entation of the applied stresses. Interpolating from the preceding
cases, the plate is most stable when the center-to-center line aligns
with the maximum principal stress, which has been observed by
Bargui and Abousleiman �11�.

Effects of Relative Ratio of Applied Stresses. Two lower val-
ues of minor principal stress are considered in this analysis, S2
=0.7 and S2=0.6. The angle � is selected to be zero to minimize
stress concentration based on the conclusions drawn from previ-
ous analysis. All other parameters are kept unchanged.

Figure 13 shows the tangential stress at the boundary of either
hole for S2=0.7 for the same separation distances. The trends
observed in Fig. 9 for S2=0.8 are repeated but with less pro-
nounced effects for decreasing center-to-center distance. For h

=2.5, the maximum tangential stress is still lower than that for a
single hole. For a separation distance of 0.2, the maximum value
is only 30.1% higher compared to the case of a single hole.

Figure 14 depicts the distribution of tangential stress for S2
=0.6. Again, the same trends are observed but with even lower
stress concentration. For h=2.2, the maximum tangential stress is
still lower than that of the single-hole solution. In other words, the
two holes help stabilize each other; two holes together are more
stable than one single hole for all four separation distances con-
sidered.

Effects of Pressures Inside the Holes. Two lower pressures in
the second hole are considered, P2=0.1 and P2=0. The angle � is
still chosen to be zero. All other parameters are kept unchanged.

Because the two holes no longer have the same stress distribu-
tion, they are considered separately in this analysis. Figure 15
presents the tangential stress at the boundary of the first hole for

Fig. 11 Tangential stress at the boundary of either hole for
a1=a2=1, S1=1, S2=0.8, �=60 deg, P1=P2=0.2

Fig. 12 Tangential stress at the boundary of either hole for
a1=a2=1, S1=1, S2=0.8, �=90 deg, P1=P2=0.2

Fig. 13 Tangential stress at the boundary of either hole for
a1=a2=1, S1=1, S2=0.7, �=0 deg, P1=P2=0.2
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P2=0.1. The trends observed in Fig. 9 for P2=0.2 also show up
but with more pronounced effects; for the same separation dis-
tance, the minima for P2=0.1 are lower and the maxima are
higher. The maximum stress at the boundary is 28.0% and 98.5%
higher than the single hole for h=2.5 and h=2.2, respectively.

Figure 16 illustrates the distribution of tangential stress at the
boundary of Hole 2 for P2=0.1. The same trends as for P2=0.2
are observed but with less pronounced effects. The maximum
stress at the boundary is only 11.5% and 50.5% higher than the
single hole for h=2.5 and h=2.2, respectively.

Similar conclusions can be drawn for the case of P2=0. Figure
17 shows the stress distribution at the boundary of Hole 1. The
increase of maximum stress relative to the case of a single hole
shoots up to 40.2% and 129.9% for h=2.5 and h=2.2, respec-
tively. Figure 18 displays the stress distribution for Hole 2. Except
for the case of h=2.2, the same trends as for P2=0.1 are observed
but with even more definite effects. For h=2.2, the stress distri-

bution is complex near �=0 deg. There exist two maxima sym-
metrical about �=0 deg. �=0 deg itself is a local minimum.

Effects of the Size of Hole 2. All loading conditions are kept
the same as the first analysis, namely, S1=1, S2=0.8, and P1
= P2=0.2. � is again taken to be zero. The radius of Hole 1 is
fixed at 1. Only the size of Hole 2 is varied. Two smaller values of
a2 are considered, a2=0.5 and a2=0.25.

Figure 19 shows the tangential stress at the boundary of Hole 1
for a2=0.5. The same set of separation distances of 0.2, 0.5, 1.0,
and 2.0 is used. Consequently, the new center-to-center distances
are 1.7, 2.0, 2.5, and 3.5. The stress distribution for angles be-
tween 100 deg and 260 deg varies little with varying separation
distance. The reason is that Hole 1 is twice as big as Hole 2.
Therefore, regions far away from Hole 2 are not affected very

Fig. 14 Tangential stress at the boundary of either hole for
a1=a2=1, S1=1, S2=0.6, �=0 deg, P1=P2=0.2

Fig. 15 Tangential stress at the boundary of Hole 1 for a1=a2
=1, S1=1, S2=0.8, �=0 deg, P1=0.2, P2=0.1

Fig. 16 Tangential stress at the boundary of Hole 2 for a1=a2
=1, S1=1, S2=0.8, �=0 deg, P1=0.2, P2=0.1

Fig. 17 Tangential stress at the boundary of Hole 1 for a1=a2
=1, S1=1, S2=0.8, �=0 deg, P1=0.2, P2=0
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much. They are somewhat shielded from the effects caused by the
second hole. For h=1.7, there are two maxima close to each other
and symmetrical about �=0 deg while �=0 deg itself is a local
minimum.

Figure 20 presents the tangential stress at the boundary of Hole
1 for a2=0.25. The same trends are observed for this case. The
shielding effect is much stronger because Hole 1 is now four times
bigger than Hole 2. Most of the stress distribution stays essentially
the same regardless of the separation distance. Only a small re-
gion directly facing Hole 2 has stress distribution strongly depen-
dent on h. For a separation distance of 0.2 there are two maxima
symmetrical about �=0 deg, similar to the case of a2=0.5. How-
ever, they are much more distinguished for a2=0.25.

Figures 21 and 22 show the stress distribution for Hole 2 when

a2=0.5 and a2=0.25, respectively. They follow similar trends; as
the separation distance decreases, two local maxima tend to de-
velop at �=0 deg and �=180 deg.

Conclusions
An analytical solution for the stresses in an infinite plate sub-

jected to nonhydrostatic state of far-field stress with two circular
holes of any size has been derived and validated analytically as
well as experimentally herein. The distribution of tangential stress
at the boundary of the holes has also been investigated using the
newly derived solution. The analysis shows that the maximum
tangential stress at the hole boundary does not always increase
with decreasing separation distance between the holes. The solu-
tion also suggests that the plate is most stable when the center-to-

Fig. 20 Tangential stress at the boundary of Hole 1 for a1=1,
a2=0.25, S1=1, S2=0.8, �=0 deg, P1=P2=0.2

Fig. 21 Tangential stress at the boundary of Hole 2 for a1=1,
a2=0.5, S1=1, S2=0.8, �=0 deg, P1=P2=0.2

Fig. 18 Tangential stress at the boundary of Hole 2 for a1=a2
=1, S1=1, S2=0.8, �=0 deg, P1=0.2, P2=0

Fig. 19 Tangential stress at the boundary of Hole 1 for a1=1,
a2=0.5, S1=1, S2=0.8, �=0 deg, P1=P2=0.2
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center line aligns with the maximum principal stress, which has
been observed by earlier analyses �11�. Finally, the interplay be-
tween the various input parameters is very complex and could be
very involved computationally, if conducted through numerical
analysis.
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Nomenclature

Capital Letters
O1 	 center of Hole 1
O2 	 center of Hole 2
P1 	 pressure in Hole 1
P2 	 pressure in Hole 2
S1 	 major principal stress at infinity
S2 	 minor principal stress at infinity

Lowercase Letters
a1 	 radius of Hole 1
a2 	 radius of Hole 2
h 	 center-to-center distance

r1 	 radial coordinate from O1
r2 	 radial coordinate from O2

rXn, r=1,2 	 hole number
n=1,2 , . . . 	 term number

X=A ,B ,C ,D 	 term

Greek Symbols
� 	 angle S1 makes with the center-to-center

line
�1 	 nondimensional radial coordinate from

O1
�2 	 nondimensional radial coordinate from

O2
�1 	 nondimensional radius of Hole 1
�2 	 nondimensional radius of Hole 2
�1 	 angular coordinate from O1
�2 	 angular coordinate from O2
� f 	 final Airy stress function

�0 	 Airy stress function if there were no
holes

�1 	 additional Airy stress function for Hole
1

�2 	 additional Airy stress function for Hole
2

�rr 	 radial stress
��� 	 tangential stress
�r� 	 shear stress

Appendix A: Coordinate Transformation
Formulas for transformation from coordinate system ��2 ,�2� to

coordinate system ��1 ,�1� are as follows:

ln �2 = �
n=1

�

−
1

n
�1

n cos n�1 �A1�

�2 = �
n=1

�

−
1

n
�1

n sin n�1 �A2�

�2
−n cos n�2 = �

k=1

� �n + k − 1

k
	�1

k cos k�1 �A3�

�2
−n sin n�2 = �

k=1

�

− �n + k − 1

k
	�1

k sin k�1 �A4�

�2
−n cos�n + 2��2 = �

k=0

� ��n + k

k
	�1

k cos k�1

− �n + k + 1

k + 1
	�1

k+2 cos k�1� �A5�

�2
−n sin�n + 2��2 = �

k=0

� �− �n + k

k
	�1

k sin k�1

+ �n + k + 1

k + 1
	�1

k+2 sin k�1� �A6�

The two sides of each of Eqs. �A1�–�A6� might differ by a con-
stant. However, for our purpose, the difference can be ignored and
they can be regarded as equal. The formulas for transformation
from coordinate system ��1 ,�1� to system ��2 ,�2� are obtained
from these equations by permutations.

Appendix B: Mathematical Solution
The solution outline has already been presented in the Solution

Method section. Parts of it are repeated here for clarity. First, the
stresses at infinity S1 and S2 are expanded into three components
Sxx, Syy, and Sxy. Taking two centers of pressure at O1 and O2 into
account, the Airy stress function if there were no holes is as fol-
lows:

�0 = h2�P1�1
2 ln �1 + P2�2

2 ln �2 +
Sxx

2
�1

2 sin2 �1 +
Syy

2
�1

2 cos2 �1

+
Sxy

2
�1

2 sin 2�1� �B1�

�0 takes a similar form when it is expanded around Hole 2. The
additional Airy stress functions must produce zero stresses at in-
finity and single-valued stresses and displacements. They are
therefore of the forms

ln �

�

Fig. 22 Tangential stress at the boundary of Hole 2 for a1=1,
a2=0.25, S1=1, S2=0.8, �=0 deg, P1=P2=0.2
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�−n cos n� for n = 1,2, . . .

�−n sin n� for n = 1,2, . . .

�−n cos�n + 2�� for n = 0,1,2, . . .

�−n sin�n + 2�� for n = 0,1,2, . . .

The additional set of stress functions for Hole 1 is a linear com-
bination of the preceding functions.

�1 = 1A0 ln �1 + 1B0�1 + �
n=1

�

�1An�1
−n cos n�1 + 1Bn�1

−n sin n�1�

+ �
n=0

�

�1Cn�1
−n cos�n + 2��1 + 1Dn�1

−n sin�n + 2��1� �B2�

The additional stress function for Hole 2 is obtained similarly,

�2 = 2A0 ln �2 + 2B0�2 + �
n=1

�

2An�2
−n cos n�2 + 2Bn�2

−n sin n�2

+ �
n=0

�

2Cn�2
−n cos�n + 2��2 + 2Dn�2

−n sin�n + 2��2 �B3�

where 1An, 1Bn, 1Cn, 1Dn, 2An, 2Bn, 2Cn, and 2Dn �n
=0,1 ,2 , . . . � are coefficients determined from boundary condi-
tions.

The final Airy stress function for the full solution is the super-
position of the individual Airy stress functions.

� f = �0 + �1 + �2 �B4�

This function can be expressed in terms of �1 and �1 using coor-
dinate transformation formulas presented in Appendix A. The
stresses around Hole 1 are then derived as follows:

�rr =
1

h2� 1

�1

�� f

��1
+

1

�1
2

�2� f

��1
2 	 �B5�

��� =
1

h2

�2� f

��1
2 �B6�

�r� = −
1

h2

�

��1
� 1

�1

�� f

��1
	 �B7�

The boundary conditions at infinity are automatically satisfied. At
the boundary of Hole 1, the radial stress must equal the applied
pressure and the shear stress must vanish.


�rr
�1=�1
= P1 �B8�


�r�
�1=�1
= 0 �B9�

Similarly, the final Airy stress function � f can be expressed in
terms of �2 and �2. The stresses for Hole 2 are derived using
equations similar to Eqs. �B5�–�B7�. The boundary conditions at
the boundary of Hole 2 are as follows:


�rr
�2=�2
= P2 �B10�


�r�
�2=�2
= 0 �B11�

The stresses corresponding to �0 can be easily derived. At the
boundary of Hole 1, they take the forms

�rr = �
k=1

�

1Uk sin k�1 + �
k=0

�

1Sk cos k�1 �B12�

�r� = �
k=1

�

1Tk sin k�1 + �
k=0

�

1Vk cos k�1 �B13�

For �0 given in Eq. �B1�, the coefficients are as follows:
1U2 = 1V2 = Sxy

1S0 = P1 + �Sxx + Syy�/2

1S2 = − 1T2 = P2�2 + �Sxx − Syy�/2

1Sk = − 1Tk = P2�k�k − 1� �B14�

All other coefficients are zero. Similarly, stresses at the boundary
of Hole 2 corresponding to �0 are as follows:

�rr = �
k=1

�

2Uk sin k�2 + �
k=0

�

2Sk cos k�2 �B15�

�r� = �
k=1

�

2Tk sin k�2 + �
k=0

�

2Vk cos k�2 �B16�

Equations �B8�–�B11� are solved simultaneously to obtain

1An = �
p=0

�

1An
�p� 1Bn = �

p=0

�

1Bn
�p� 1Cn = �

p=0

�

1Cn
�p� 1Dn = �

p=0

�

1Dn
�p�

2An = �
p=0

�

2An
�p� 2Bn = �

p=0

�

2Bn
�p� 2Cn = �

p=0

�

2Cn
�p� 2Dn = �

p=0

�

2Dn
�p�

�B17�

The first terms of the series are as follows:
1A0

�0� = h2�1
2�P1 − 1S0�

1An
�0� =

h2��n + 2�1Tn − n1Sn��1
n+2

2n�n + 1�
�n 
 1�
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�0� = 0
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n+2
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�n 
 1�
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 0�
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2�n + 1�
�n 
 0�
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 1�
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 1�
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�n 
 0�
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�n 
 0� �B18�

Other terms obey the following recursive relationships:
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with new parameters
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All other parameters are zero.
Substitute these coefficients back into the final Airy stress func-

tion in Eq. �B4�. Stresses around Hole 1 are again derived from
Eqs. �B5�–�B7�. The radial stress around Hole 1 takes the form

�rr = Srr +
P1�1
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The shear stress around Hole 1 takes the form
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The tangential stress around Hole 1 is as follows:
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with applied polar stress components

Srr =
Sxx + Syy
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while Sxx, Syy, and Sxy are Cartesian stress components of S1 and
S2.

The final Airy stress function � f can also be expressed in the
��2, �2� coordinate system. The stresses around Hole 2 are then
easily derived. The radial stress around Hole 2 takes the form
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The shear stress around Hole 2 is as follows:
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Finally, the tangential stress around Hole 2 is
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Although only the solution for the boundary condition of internal
pressures inside the holes is presented here, the method can be
readily applied to other boundary conditions by using the appro-
priate function �0 and modifying the boundary equations
�B8�–�B11�.
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Three-Dimensional Constitutive
Creep/Relaxation Model
of Carbon Cathode Materials
In order to adequately simulate the behavior of a Hall–Héroult electrolysis cell, a finite
element model must take into account the properties of each material forming the cell
structure and those contained in it. However, there is some lack of full knowledge of the
mechanical behavior of these materials, e.g., the long term viscoelastic (creep/relaxation)
behavior of the carbon cathode. In this present paper, a three-dimensional viscoelastic
model is devised and proposed, being ready to be implemented in a finite element code.
This 3D viscoelastic model was developed from the thermodynamics of irreversible pro-
cesses, where the selection of the model’s internal variables was based on a phenomeno-
logical approach. The model has been developed at a particular reference state; there-
fore, the model parameters are represented by constant constitutive tensors. The model’s
particular parameters were identified for three different types of cathode carbon, i.e.,
semigraphitic, graphitic, and graphitized. �DOI: 10.1115/1.2840044�

Keywords: graphite, cathodes, rheology, mechanical properties, viscoelasticity

1 Introduction

1.1 Generalities. Aluminum is produced industrially by the
so-called Hall–Héroult process �1�. This long established process
consists mainly by the electrolysis of refined alumina, previously
dissolved in a mixture of molten cryolite at a temperature of
around 980°C �2�. The electrolysis cell is schematized in Fig. 1.
During the process, multiphysical phenomena are occurring in the
electrolysis cell, these being of a thermal, mechanical, chemical,
electrical, etc., character. Knowledge of the thermochemicoelec-
tromechanical behavior of the cell itself, and of the liquid phases
it contains, is the key to the optimization of the whole process.
However, the prevailing high temperatures, molten phases, and an
overall corrosive environment make the obtaining of in situ pro-
cess measurements very difficult, and indeed, sometimes impos-
sible, to achieve.

Numerical modeling is therefore an invaluable tool to gain in-
sights into the complex phenomena taking place during such tran-
sitory steps as in smelting pot “startup.” Adequate modeling of the
mechanical responses of the cell lining is critical for the detection
and minimization of the risk of cathode block cracking or the
development of gaps in the lining, from which liquid phases could
leak out. The baking of the “ramming paste,” the quasibrittle na-
ture of the carbon blocks, the stress relaxation/creep phenomenon,
and the contact interfaces are examples of the key elements
needed to be considered within the compass of a finite element
model of the Hall–Héroult electrolysis cell.

The cell lining of the Hall–Héroult electrolysis cell �Fig. 1�
constitutes one of the cell’s major components. The lining itself
contains a range of various components, each having those spe-
cific functions and properties to enable it to play a precise role in
the thermoelectromechanical behavior of the cell �2�. The lining
materials can be grouped into two material categories, i.e., refrac-

tory types and carbon materials. In previous studies of cell design,
an integrated approach has been adopted for the finite element
simulation of cell preheating, where all of the important phenom-
ena are coupled, and some physical phenomena, and their interac-
tions, have been addressed, e.g., D’Amours �3� �carbon materials�,
D’Amours et al. �4� �carbon materials�, Goulet �5� �contact inter-
faces�, Richard �6� �refractory�, Richard et al. �7� �refractory�, and
Désilets et al. �8� �cell preheating simulation�.

1.2 Strain in Carbon Materials. In the Hall–Héroult elec-
trolysis cell, the carbon materials, as with many other materials,
are affected by the high prevailing temperatures, the Joule effect,
chemical contamination, the baking of lining materials �ramming
paste�, etc. �2�. All of these phenomena induce stresses and strains
in the cell materials. Thus, the three-dimensional total strain of a
material, the carbon cathode/“baked” ramming paste in this case,
can be expressed as

��� = ��e� + ��p� + ��ch� + ��T� + ��a� + ��v� + � ��other� �1�

where all strains are second-order tensors. The elastic strain ��e� is
generally a well known parameter since it is related to Young’s
modulus and Poisson’s ratio, classical parameters that are ob-
tained from the mechanical characterization of materials �2,9–13�.
The plastic strain ��p� of carbon materials has also been investi-
gated �3,4�, by defining a pseudoelastoplastic constitutive law,
based on a failure envelop. This model also takes into account the
hardening and softening of the carbon material. The chemical
strain ��ch� may be associated with chemical contamination or
reaction. In the Hall–Héroult cell, this strain is related to the car-
bon cathode swelling �14�, and an analytical model, based on
Fick’s law, has also been proposed by Zolochevsky et al. �15�. The
thermal strain ��T� is related to the thermal expansion and is also
a well known material property �2�. The time-dependant vis-
coelastoplasticity of the material is taken into account through the
viscoelastic strains ��a� and viscoplastic strains ��v�, which corre-
spond to the anelastic �dissipative reversible� and viscous �dissi-
pative irreversible� mechanisms, respectively. The viscoelastic
strain is also associated with the creep/relaxation phenomenon.
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The last term of Eq. �1� represents any other strains that should be
taken into consideration for a specific case �e.g., strain due to the
magnetic forces�.

1.3 Mechanical Aspects of the Cathode Block. The carbon
materials employed in the cell lining include the ramming paste
and the cathode. The ramming paste behavior has been addressed
by D’Amours et al. �4� by developing a three-dimensional
chemoelastoplastic model, which is a function of the hydrostatic
pressure and the ramming paste baking. In fact, before pot startup,
the ramming paste is green and its baking will begin during the
preheating phase �2�. Once the paste is fully baked, its behavior is
similar to that of a cathode block. The other carbon material, i.e.,
the carbon cathode, is one of the most important parts of the cell
because it is mainly this component that determines the overall
life expectancy of the cell �2�. In fact, high temperatures and
sodium diffusion �15–20� all lead to the cathode block expansion.

The cell mechanical behavior is a strain driven problem. In fact,
the materials of the cell lining are enclosed in the pot shell �2�,
thereby restraining the expansion of these materials. Therefore, it
is very important that the cathode behavior during the operation of
the Hall–Héroult cell be well understood. The model developed
by D’Amours et al. �4� can assess the hardening, softening, and
plastic strain of carbon materials. However, the mechanical behav-
ior of the cathode under a state of sustained stress, i.e., on the
long-term viscoelastic �creep/relaxation� behavior, is still lacking
in some relevant knowledge.

Up to five years ago, no measurement was available on the
creep behavior of carbon materials situated in the electrolysis cell
�Fig. 1�. The creep of these materials was first demonstrated by
Hop �19�. The experimental results obtained from Hop’s experi-
ments were purely axial ones and were obtained for a short time
period of a few hours only. The creep behavior has since been
described by means of a 1D logarithmic equation. However, this
cannot be used in the context of a three-dimensional, finite ele-
ment analysis.

Creep and relaxation models are generally based on a rheologi-
cal approach, involving unidirectional considerations. However,
Fafard et al. �21� have extended this approach for the three-
dimensional case where the scalar parameters of the rheological
model have become fourth-order tensors. The so developed model
is compatible with the finite element method and thus can be used
in a finite element analysis. By taking into account the effect of

external parameters, such as temperature, sodium migration, and
bath penetration in the lining �cathode swelling�, the reduced time
method can be used �21,22�. However, in the present case, using
the reduced time method leads to a system of equations with non-
constant coefficients and thus cannot be solved analytically. The
solution will then be obtained by considering all model param-
eters to be constant. The dependencies of external parameters will
be taken into account in the numerical simulation by substituting
the constant parameters of each tensor by an algebraic expression
function of temperature, chemical contamination, etc., evaluated
at each time step.

Three-dimensional models of the viscoelastic behavior of the
carbon cathode, adapted for a finite element analysis, are nonex-
istent. However, concrete is a material macroscopically similar to
the carbon cathode blocks and various authors have proposed
models for this comparative situation �21,23,24�. Constitutive
laws proposed by these authors are developed using the rheology
and thermodynamics of irreversible processes. Due to the similar-
ity of both materials �carbon cathode and concrete�, this method-
ology has been applied to aid in the development of the three-
dimensional, viscoelastic constitutive law applicable to the carbon
cathode materials.

However, concrete models are generally developed in order to
predict the longitudinal strains existing under uniaxial stresses and
are extended to 3D cases by analogy with classical Hooke’s law in
considering a “creep” Poisson’s ratio �23,24�. For many carbon
materials, e.g., POCO graphite �25–27�, experimental tests are
generally performed at their industrial operational temperature
�around 1000°C�; so, the measurement of radial strains involves
major technical difficulties. Moreover, in order to achieve the
same stress levels, at both ambient and high temperatures, experi-
ments at high temperatures must be conducted on small samples
��10 mm diameter�. This is due to the degradation of the me-
chanical properties of some apparatus metallic parts at the el-
evated temperature, e.g., the extension/compression rod entering
the test furnace �19�. As Poisson’s ratio for carbon materials is
generally small ��0.15�, measuring the radial strains developed in
those small samples is thus irrelevant.

Therefore, a parameter’s identification generally relies on the
axial strains only, as was the case of Fafard et al. �21� with con-
crete. However, in the case of the three-dimensional model, as
developed here, and the similar one by Fafard et al. �21�, the use
of axial information only is not sufficient. This point will be ex-
panded upon in the paper.

The model’s parameters were identified for three different types
of carbon cathode: semigraphitic �SG�, graphitic �GQ�, and
graphitized �GZ�. Experimental viscoelastic data for the identifi-
cation comes from Picard �28�. The later works presents the ex-
perimental setup and experimental results. The main experimental
objectives were as follows:

• to measure the axial and radial strains under uniaxial, sus-
tained stresses of virgin samples at the ambient temperature
�reference state�

• to confirm the presence of the creep/relaxation phenomena
in the carbon cathode

• to compare the creep behavior of three types of carbon cath-
ode �SG, GQ, and GZ�

• to propose creep mechanisms
• to provide data for the parameter’s identification of the

three-dimensional viscoelastic model for the three types of
carbon cathode examined �SG, GQ, and GZ�

In this paper, the main objective is that of presenting a consis-
tent three-dimensional viscoelastic model, compatible with classi-
cal solid mechanic equations, and usable in a finite element code
for the carbon cathode material used in a Hall–Héroult cell. The
proposed constitutive model is suitable for contaminated carbon
materials at different temperatures. However, this paper presents
the results of parameter identification of the three-dimensional

Fig. 1 Diagram of the Hall–Héroult electrolysis cell †6‡
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model based on the viscoelastic experimental data of Picard �28�,
at the so-called “reference state,” i.e., at room temperature and for
virgin material �noncontaminated�. In a consistent viscoelastic
model, it is important to start from parameters at a known refer-
ence state and then allow evolution of those parameters, for ex-
ample, as a function of temperature and sodium contamination.
This approach makes it possible, for example, to analyze the ther-
mochemomechanical behavior of the electrolysis cell in a tran-
sient state during startup.

Tables 1 and 2 now present brief details of the selected carbon
materials and some of their physical properties �2,17,28�.

2 Three-Dimensional Viscoelastic Model

2.1 Proposed Viscoelastic Model. To identify the parameters
of a model, the thermodynamic approach is used and thus internal
state variables �ISVs� need to be defined �21�. Instead of choosing
generic ISV �21�, the choice of these variables is based on the use
of a phenomenogical approach. To represent the viscoelastic be-
havior of the carbon materials, a Kelvin–Voigt rheological model
has been chosen, based on experimental observations, as shown in
Fig. 2, where the parameters of the model are fourth-order tensors,
while the strain and the stress are second-order tensors. As pre-
sented further in this paper, the model of Fig. 2 represents ad-
equately the viscoelastic behavior of the studied material. One
may refer to Simo et al. �29� for other viscoelastic models and
their finite element implementation.

Assuming the conditions of a virgin material, having no perma-
nent strain due to the earlier damage, constant temperature, and
without other environmental phenomena that can cause additive
strains, the total strain ��� �second-order tensor�, as defined in Eq.
�1�, is reduced to

��� = ��e� + �
�=1

N

���
a� �2�

where ��e� is the instantaneous elastic strain, ���
a� is the anelastic

strain associated with the Kelvin–Voigt element �, and N is the
number of Kelvin–Voigt elements. Thus, the phenomenogical
ISVs, related to the viscoelastic rheological model, are ��e�, asso-
ciated with the elastic strain, and ���

a�, associated with the anelas-
tic strain of the � viscoelastic element.

In the present paper, anelasticity means a reversible time-
dependant, or reversible dissipative, mechanism. Therefore, due to
this reversibility behavior, the anelastic strain �time dependent� is
fully recovered at the end of the recovery period �trecovery→��.
The zone known as the ‘‘recovery period’’ represents the period of
time during which the strains evolve after the removal of all ex-
ternal stress applied to the solid.

The 3D rheological model proposed �Fig. 2�, being constituted
of one elastic element �non dissipative reversible mechanism� and
N anelastic elements �dissipative reversible mechanisms�, the total
strain will be entirely recovered if the external stress is removed.
It is important to note that the last remark is valid only for the
viscoelastic behavior of the material, as represented by Eq. �2�. In
the case where material damage or permanent strains have oc-
curred, residual strains will be observed at the end of the recovery
period.

2.2 Thermodynamic Framework Applied to Solid
Mechanic. The fundamental thermodynamic equations applied to
solid mechanic are well known and are thus introduced without
any preliminary considerations. The methodology used here is
similar to that of Fafard et al. �21�. Using the Voigt notation, the
Helmoltz free energy � is defined by

�� =
1

2
��e��He�	�e
 +

1

2�
�=1

N

���
a��H�

a�	��
a
 �3�

where �He� is the Voigt form of the fourth-order elasticity tensor
and �H�

a� is the fourth-order tensor related to the spring of the �
Kelvin–Voigt element. The parameters defining those tensors must
be identified using an appropriate test setup. In order to take into
account the dissipative mechanism of the model, a dissipative
potential �, per unit of volume, can be chosen as a quadratic form
of its arguments:

�� =
1

2�
�=1

N

��̇�
a����

a�	�̇�
a
 �4�

where the fourth-order tensor ���
a� is related to the dashpot of the

� Kelvin–Voigt element. The parameters of this tensor must also
be identified. Based on the thermodynamics of irreversible pro-
cesses �TIP� and on the choice of the ISVs, the Clausius–Duhem
inequality can be written as

�T + �M 	 0 �5�

where �T represents the thermal terms and �M the mechanical
terms. For the viscoelastic problem, and assuming that the thermal
part �T is satisfied, Eq. �5� can be rewritten, with the mechanical
terms only, as

�m = �
�:��̇� − �̇ 	 0 �6�

��
� − �
��

���e�
�:��̇e� + �

�=1

N ��
� − �
��

����
a�
�:��̇�

a� 	 0 �7�

where �
� is the stress tensor. The first term in the Eq. �7� is
associated with the elastic strain �30� and, based on the fact that
this strain is related to a reversible mechanism, one can write

Table 1 Description of the carbon cathode blocks

Semigraphitic Graphitic Graphitized

Filler Anthracitic �20% graphite� Graphitic Petroleum coke
Binder Pitch Pitch Pitch
HTTa �°C� 1200 1200 2400–3000

aHeat treatment temperature.

Table 2 Selected properties of carbon cathode blocks

Semigraphitic Graphitic Graphitized

Young’s modulus �MPa� 7695 4658 3913
Poisson’s ratio 0.14 0.12 0.11

Crushing strength �MPa� 34.7 22.1 20.1
Real density �g /cm3� 2.05–2.18 2.10–2.19 2.19–2.24
Apparent porosity �%� 15.4–16.4 17.1–17.5 16.9–17.3

Electrical resistivity ��� m� 12–18 16–24 8–14

Fig. 2 Diagram of the three-dimensional viscoelastic rheologi-
cal model
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�
� = �
��

���e�
�8�

The Clausius–Duhem inequality �7� can then be rewritten as

�
�=1

N ��
� − �
��

����
a�
�:��̇�

a� 	 0 �9�

To satisfy the former equation, the complementary evolution law
proposed in the following equation is postulated:

�
� − �
��

����
a�

=
��

���̇�
a�

�10�

Assuming that ���
a� are positive semidefinite, the use of Eqs. �4�

and �10� ensures that Eq. �9� is satisfied and thus the Clausius–
Duhem equation is also satisfied. Using the definitions of � and �
in Eq. �10� leads to, in Voigt notation,

���
a�	�̇�

a
 + �H�
a�	��

a
 = 	

 �11�

for a given �. Due to the choice of the ISV, the fourth-order
tensors that need to be identified ����

a� and �H�
a�� correspond to

the tensors in the rheological model, presented earlier �Fig. 2�.
In Eq. �11�, the fourth-order tensors could be expressed as a

function of different parameters, such as the temperature. The lat-
ter equation can be solved analytically or through numerical inte-
gration. Numerical integration of Eq. �11� can be done even if
���

a� and �H�
a� are time-dependent tensors. In the present case, the

time dependency is being taken into account implicitly through
the parameters T�t� and �t�, representing the temperature and
chemical contamination, respectively. For simplification, the
shortened notation T and  will be used from now on.

Analytically, temperature and chemical contamination depen-
dencies are generally taken into account through a scalar function
in order to define an equivalent time, a method often used in this
kind of problem �21,22�. The fourth-order tensors are then defined
as follows:

���
a�T,�� = f��T,����

a�, �H�
a�T,�� = g��T,��H�

a�, �He�T,��

= h�T,��He� �12�

The tensors with overbars express the quantity at the reference
state, while the scalars multiplying the tensors express the depen-
dencies of temperature �T� and chemical contamination �� in the
present case. However, the equivalent time method �see, for ex-
ample, Refs. �21,22�� cannot be used to solve Eq. �11� analytically
since this leads to a differential equation system with nonconstant
coefficients.

In order to obtain an analytical solution, Eq. �11� must be a
nonhomogeneous differential equation with constant coefficients.
Thus, Eq. �11� will be solved at the reference state, i.e., by con-
sidering all coefficients independent of T and  and thus of time.
This assumption implies that there is no evolution of the param-
eters. By assuming that the mechanical strains/stresses have no
influence on the thermal and chemical variables, the mechanical
problem can be uncoupled from the thermal and the chemical
ones. Moreover, stating that the mechanical problem must respect
the second principle of the thermodynamics, as shown by Eq. �6�,
is more restrictive and also ensures that the thermochemome-
chanical problem respects the second principle.

The dependencies of temperature T and chemical contamination
, or any other parameter, will then be taken into account in the
finite element model. In fact, in a finite element model, the com-
ponents of all fourth-order tensors will be defined as algebraic
equations, which will be a function of T and . The identification
of these algebraic functions will be done experimentally. How-
ever, this paper focuses on the identification of the fourth-order
tensor parameters at the reference state only.

2.3 Topology of the Tensors. Assuming that the carbon cath-
ode is an isotropic material, all of the tensors in the rheological
model have the form of the elastic one. In fact, since the tensors
are related to the same material, it is logical to consider that they
have the same topology �31�, as defined hereafter:

�A�B,��� =
B

�1 − 2���1 + ��
1 − � � � 0 0 0

� 1 − � � 0 0 0

� � 1 − � 0 0 0

0 0 0 �1 − 2��/2 0 0

0 0 0 0 �1 − 2��/2 0

0 0 0 0 0 �1 − 2��/2
� �13�

Hence, each tensor of the three-dimensional model is defined as
function of two positive independent variables, one being similar
to Young’s modulus �B� and the other one similar to Poisson’s
ratio ���. These variables must be identified in a laboratory, as
explained later in this paper. In the case of the elastic tensor �He�,
the variables are Young’s modulus �E� and the Poisson’s ratio ���.
The parameters of the tensors, as defined in Eqs. �3� and �4�,
which also correspond to the tensors of the rheological model,
based on a phenomenogical approach, are summarized below:

�He� = �He�E,���

�H�
a� = �H�

a�EH
�
a ,����

���
a� = ���

a�E�
�
a ,���� �14�

2.4 Analytical Solution

2.4.1 Generalities. In finite element analysis, strain history is
very important. In fact, generally, the finite element method is
based on strain evolution, solved with the use of the classical
interpolation method. From the strain increment, the incremental
stress can be estimated. Plasticity, damage, hardening, etc., are all
phenomena that can affect the evolution of strains and are taken
into account through a numerical integration scheme �3,4,6,32�. It
is thus important to solve the local system, based on strain pre-
diction, to do a numerical implementation of the three-
dimensional viscoelastic model.

Before implementing the model, all fourth-order tensors of Eq.
�11� need to be identified. This latter equation can be developed
for the relaxation case or the creep case, assuming the material has
a linear viscoelasticity. Therefore, performing creep or relaxation
tests leads to the identification of the same tensor parameters.
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However, creep tests are easier to carry out since maintaining a
constant strain demands a more complex apparatus. Moreover, it
is easier to solve Eq. �11� for the creep case.

2.4.2 Creep Case. Starting from Eq. �11�, one can rewrite it
as, in Voigt notation,

	�̇�
a
 + ���

a�−1�H�
a�	��

a
 = ���
a�−1	

 �15�

for a given �. In the creep situation, 	

 is known and constant. In
order to solve Eq. �15�, the diagonalization technique �21� �modal
projection� is used. First, one needs to determine the eigenvalues
and eigenvectors of the following system of equations:

����
a�−1�H�

a� − ���I��	x�
 = 0 �16�

where �� and 	x�
 are the eigenvalues and eigenvectors, respec-
tively, for the system. Hence, it can be easily demonstrated that

�X��−1���
a�−1�H�

a��X�� = �D�� �17�

with �X�� containing all the eigenvectors, placed column by col-
umn, while �D�� is a diagonal matrix containing all of the corre-
sponding eigenvalues. The modal projection �21� is then defined
as

	��
a
 = �X��	z�

a
 �18�

and Eq. �15� can be rewritten as

�X��−1	�̇�
a
 + �X��−1���

a�−1�H�
a�	��

a
 = �X��−1���
a�−1	

 �19�

	ż�
a
 + �D��	z�

a
 = �X��−1���
a�−1	

 = 	F�
 �20�

Equation �20� is now a fully uncoupled system �six equations�,
where the ith equation is

ż�i

a + D�ii
z�i

a = F�i
�21�

Moreover, in the creep case and by always considering the tensors
at a reference state, F�i

is a constant. Equation �18� can then be
rewritten, using standard analytical solution of Eq. �21� and by
considering that the anelastic strain at the initial condition are
z�i

a =��i

a =0 �at t=0 only elastic strain can undergoes for the pro-
posed model�, as

	��
a
 = �X���

F�1�
0

�

e−��1
�t−��d�

F�2�
0

�

e−��2
�t−��d�

]

F�6�
0

�

e−��6
�t−��d�

� �22�

From Eq. �8�, the total strain can be expressed as

	�
 = �He�−1	

 + �X��
�=1

N �
F�1�

0

�

e−��1
�t−��d�

F�2�
0

�

e−��2
�t−��d�

]

F�6�
0

�

e−��6
�t−��d�

� �23�

where �X��= �X�. In fact, all tensors have the same topology, as
stated earlier, thus the eigenvectors of Eq. �16� are constant and
identical for any value of �. The matrix �X� is presented in Eq.
�24�. The column i of the matrix of eigenvectors �X� is associated
with the eigenvalues ��i

�X� = 
1 − 1 − 1 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

� �24�

��1
=

EH
�
a�1 − 2���

E�
�
a�1 − 2���

, ��2,3,4,5,6
=

EH
�
a�1 + ���

E�
�
a�1 + ���

�25�

Finally, the vector F� can be expressed as

	F�
 = �X��−1���
a�−1	



= −
�2�� − 1�
1 + �2�� − 1�
2 + �2�� − 1�
3

3E�
�
a

−
��� + 1�
1 − 2��� + 1�
2 + ��� + 1�
3

3E�
�
a

−
��� + 1�
1 + ��� + 1�
2 − 2��� + 1�
3

3E�
�
a

�
2�1 + ����12

E�
�
a

2�1 + ����13

E�
�
a

2�1 + ����23

E�
�
a

�26�

For identification purposes, Eq. �23� is solved by assuming a
uniaxial creep test �uniaxial compression under sustained stress,
with free lateral stress� on a cylindrical carbon sample. The ap-
plied constant stress and the integrated strain equations are then

�
� = �− 
1 0 0 0 0 0� �27�

�1 = − 
1� 1

EHe
+

1

9�
�=1

N

K�
a−1 1 − e−��1

t

��1

+
1

3�
�=1

N

G�
a−1 1 − e−��2

t

��2

�
�28�

�r = − 
1�−
�

EHe
+

1

9�
�=1

N

K�
a−1 1 − e−��1

t

��1

−
1

6�
�=1

N

G�
a−1 1 − e−��2

t

��2

�
�29�

with

K�
a−1

=
3�1 − 2���

E�
�
a

, G�
a−1

=
2�1 + ���

E�
�
a

�30�

where 
1 is the constant axial stress, �1 the corresponding strain,
and �r the hoop strain. All other strain components are null. The
first part of Eqs. �28� and �29� represents the elastic strain. To take
into account the creep strain 	�creep
 only, these equations can be
rewritten as

�1
creep = − 
1�1

9�
�=1

N

K�
a−1 1 − e−��1

t

��1

+
1

3�
�=1

N

G�
a−1 1 − e−��2

t

��2

�
�31�

�r
creep = − 
1�1

9�
�=1

N

K�
a−1 1 − e−��1

t

��1

−
1

6�
�=1

N

G�
a−1 1 − e−��2

t

��2

�
�32�

The coefficients K�
a−1

and G�
a−1

are related to the hydrostatic and
deviatoric creep mechanisms, respectively. Moreover, the coeffi-
cients ��i

are positive and 1 /��i
are related to a relaxation time.

The elastic parameters E and � of the tensor �He� must be identi-
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fied through standard compression tests, while the anelastic pa-
rameters EH

�
a , ��, E�

�
a , and �� must be identified through experi-

mental creep tests.
At t=0, Eqs. �28� and �29� can be simplified to express the

instantaneous elastic strain:

�1 = − 
1
1

EHe
, �r = 
1

�

EHe
with

�r

�1
= − � �33�

At t→�, the steady-state solution is found,

�1 = − 
1� 1

EHe
+

1

9�
�=1

N

K�
−1 +

1

3�
�=1

N

G�
−1� �34�

�r = − 
1�−
�

EHe
+

1

9�
�=1

N

K�
−1 −

1

6�
�=1

N

G�
−1� �35�

where

K�
−1 =

3�1 − 2���
EH

�
a

, G�
−1 =

2�1 + ���
EH

�
a

�36�

It can be observed that when t→�, the steady-state solution de-
pends only on the parameters representing the spring elements in
Fig. 2, designated by �He� and �H�

a�. In fact, the solution at t
→� leads to 	�̇
=0, thus the steady-state solution is independent
of time and those parameters related to time function, such as
���

a�. The same result would be observed if the rheological model
was 1D rather than 3D.

At t→�, the three-dimensional viscoelastic model leads to
“creep” Poisson’s ratio �creep defined by Eq. �37�. The creep
strains are defined by Eqs. �31� and �32�.

�creep = −
�r

creep

�1
creep �37�

Performing the ratio �r
creep over �1

creep at t→� leads to

�creep =

�
i=1

N

��i/EHj
a�

�
i=1

N

�1/EHj
a�

�38�

3 Parameter Identification

3.1 Generalities. In the three-dimensional viscoelastic model
developed in this paper, there are several parameters that need to
be identified. The first are the two coefficients of the fourth-order
elastic tensor �He�, i.e., Young’s modulus �E� and Poisson’s ratio
���, which have been easily determined by means of standard
compression tests �28� and can be found in Table 2. Then, there
are the two coefficients for each fourth-order tensor �H�

a� and
���

a�, as shown by Eq. �14�. The last parameter, the number of
Kelvin–Voigt elements N, is fixed. Therefore, only the creep strain
needs to be taken into account since the elastic strain parameters
are already known at this point �28�. Therefore, Eqs. �31� and �32�
will be used for the identification process.

All parameters, except the elastic ones �E and ��, have been
obtained through use of the least squares method to minimize the
error of an objective function, through the use of a genetic algo-
rithm. The genetic algorithm �GA� only requires range values for
each parameter. However, a GA does not converge to a unique
solution. Since EH

�
a and E�

�
a are similar to Young’s modulus and

�� and �� to Poisson’s ratio, the intervals have been chosen as

0 � 	��,��
 � 0.5 �39�

0 � 	EH
�
a ,E�

�
a
 � 107 �40�

where the upper limit, 107, of both EH
�
a and E�

�
a has been deter-

mined after many trials. The units of EH
�
a are MPa, while those of

E�
�
a are MPa h. To take into account both the axial and the radial

strains, the objective function to be minimized has the following
form:

Fig. 3 Parameter’s identification of the SG carbon material with axial
strains only
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waxial

wradial + waxial
�
i=1

n

��maxiali
− �caxiali

�2

+
wradial

wradial + waxial
�
i=1

n

��mradiali
− �cradiali

�2 �41�

where waxial and wradial are the weights, respectively, applied to the
axial and radial data; c means that the data are calculated via Eqs.
�31� and �32�; m signals that the data are the measured one; n is
the number of data used in the minimization method. The optimi-
zation method used was the Genetic Algorithm Optimization
Toolbox �GAOT� for MATLAB.

Experimental data were obtained by conducting creep tests at
three different stress levels �20%, 30%, and 40% of the crushing
strength 
u� on the three carbon cathode materials �SG, GQ, GZ�.
The crushing strength of each material is presented in Table 2. The
details of these experiments are presented in Picard �28�. How-
ever, it is important to note that the optimization is based on the
mean values for the specific creep. The specific creep �SC� strain
is defined by

	�SC
 =
	�
 − 	�e


�
1�
�42�

where �
1� is the absolute value of the applied constant stress in
the axial direction. Thus, Eqs. �31� and �32� need to be normalized
by �
1�, before using the GA.

3.2 Preliminary Results. Radial strains are rarely measured
in creep tests. Thus, parameter identification is generally based
only on the axial strains �21�. However, in the case of this three-
dimensional model, the use of axial information only is not suffi-
cient. In fact, using wradial=0 in the objective function �41� leads
to the results shown in Fig. 3. Clearly, using only the axial strain
information could lead to a very good correlation between the
model and the experiment in the axial direction. However, in the
radial direction, the model prediction is not physically admissible.
In fact, it is impossible to observe an increase, followed by a
decrease, of the radial strain under constant sustained stress.

Hence, one must use both radial and axial strains in order to
obtain relevant, three-dimensional viscoelastic parameters, even if
the measured radial strains are often of poor quality �28�.

To put emphasis on the axial strains without totally neglecting
the radial ones, the “weight method” is used, as shown by the Eq.
�41�. Even if there is no optimum ratio, the weights used were
generally as follows: wradial=1 and waxial=5, which is similar to
Poisson’s ratio.

3.3 Parameters Identification. Using both axial and radial
datasets leads to a very good prediction in the two directions
�Figs. 4–6�. Thus, the radial strain can be seen as a supplementary
constraint to the optimization problem, i.e., to converge toward a
solution with a physical meaning. Also, as shown in Figs. 4–6, the
determination of the parameters was performed using three differ-
ent configurations, i.e. using one, two, and three Kelvin–Voigt
elements �N=1,2 ,3�. Using more than three Kelvin–Voigt ele-
ments does not improve the model prediction. Moreover, the ac-
ceptance of a solution obtained with the GA is based on both the
error given by the objective, Eq. �41�, and the visual aspect of that
solution judged to be relevant. Also, it must be mentioned that the
radial strains of the GZ material have been estimated by assuming
�radial=−��axial, where � is Poisson’s ratio, since the measured
radial strains were unusable for the parameter’s identification �28�.

Since that the predictions made with N=2 and N=3 are very
similar for the long-term behavior, a model with N=2 has been
chosen and the parameters are presented in Table 3. This choice is
based on finite element considerations; the complexity of the stiff-
ness matrix increases with the number of anelastic elements �6�.
However, in the case of the GZ material, only one anelastic ele-
ment �N=1� could fairly represent the viscoelastic behavior, while
in the case of the GQ and SG materials, two anelastic elements
�N=2� are a minimum. Both GQ and SG materials have a high
quantity of anthracite or amorphous coke content, while the struc-
ture of the GZ material is almost 100% GQ �2,33�. Thus, one can
assume that the creep of a highly uniform, oriented lattice �GZ�
arises from one dominating mechanism �N=1�, while the creep
mechanisms of a more globally disoriented lattice �SG, GQ� are
more complex �N�1�. In general, the anthracitic part is related to

Fig. 4 Parameter’s identification of the SG carbon material
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the binder. Hence, one can assume that the binder structure is
responsible for the supplementary anelastic elements needed to
adequately represent the viscoelastic behavior of the GQ and SG
materials.

Figures 7–9 present the hydrostatic and deviatoric creep mecha-
nisms, related to each Kelvin–Voigt element �anelastic mecha-
nism� of the three-dimensional model and Table 4 presents the
values of the coefficients K�

a and G�
a , related to the hydrostatic and

deviatoric creep mechanisms, respectively, and those of the coef-
ficients ��1

−1, related to a relaxation time. The bold lines in Figs.
7–9 are the results related to the first or second mechanism, while

the nonbold lines represent the total strains associated with differ-
ent mechanisms in the axial or radial direction. It can be observed
that the long-term creep strain of the SG material �Fig. 7� is driven
by the second deviatoric mechanism and that both Kelvin–Voigt
elements contribute to model the creep behavior. In the GQ case
�Fig. 8�, the first anelastic element seems to be responsible for the
long-term behavior, while the second element is responsible for
the short time behavior and it is the dominant one. Thus, this
shows up the rapidity of the creep mechanisms in the GQ mate-
rial. The results of the GZ material �Fig. 9� clearly show that only
one Kelvin–Voigt element has been used since the second element

Fig. 5 Parameter’s identification of the GQ carbon material

Fig. 6 Parameter’s identification of the GZ carbon material
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merely contribute to the creep behavior. This is in accordance with
the observations stated above and based on Fig. 6. All these ob-
servations on the three materials are relevant in both axial and
radial directions. It is important to note that since all anelastic
elements �Kelvin–Voigt elements� are placed in series, it is pos-
sible to modify their order without altering the results.

Also, based on the results presented in Table 4, the higher re-
laxation times ��1

−1 associated with each material can be ordered as
follows:

GQ � GZ � SG �43�

This classification is similar to the one of t�total
c �time required to

reach a steady state� presented in Picard �28�.
Moreover, in Table 5, Poisson’s ratio � is compared with creep

Poisson’s ratio �creep at t→�, defined in Eq. �38�, for the three

materials. In the case of the GZ material, both Poisson’s ratios are
identical since the radial strains were estimated using �radial=
−��axial.

Creep Poisson’s ratio of the other two materials �SG and GQ�
may, however, indicate an evolution of that ratio over time. Per-
forming creep Poisson’s ratio �creep�t� for the �SG� material leads
to the result shown in Fig. 10. A similar result was obtained for
the GQ material. This result �Fig. 10� clearly shows the evolution
of creep Poisson’s ratio and points to the necessity for taking into
account both the axial and the radial strains for the identification
process, not just the axial one alone. Also, this result means that
the assumption made to estimate the radial strain of the GZ ma-
terial, i.e., �radial=−��axial, is inadequate since � is not constant
throughout the creep. However, as shown by Fig. 3, it is impera-

Table 3 Parameters of the rheological model with two Kelvin–Voigt elements „N=2…

E�1
a

�MPa h� �1

EH1
a

�MPa� �1

E�2
a

�MPa h� �2

EH2
a

�MPa� �2

SG 840,306 0.07 712,153 0.13 7,562,665 0.20 689,502 0.39
GQ 6,193,999 0.11 1,760,191 0.27 322,398 0.05 253,990 0.04
GZ 731,232 0.12 124,487 0.11 5,198,490 0.18 8,031,829 0.23

Fig. 7 Hydrostatic and deviatoric creep mechanisms for the SG material. „–·–… hydrostatic creep strain of the anelastic
mechanism �; „– –… deviatoric creep strain of the anelastic mechanism �; „- - -… total hydrostatic creep strain; „–··–… total
deviatoric creep strain; „—… total creep strain.
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tive to use a radial dataset for the parameters’ identification. Thus,
it is better to use an estimate of the radial strain than not to use
one at all.

4 Conclusions
The main contribution of this paper is the development of a

three-dimensional, viscoelastic constitutive model, based on the
work of Fafard et al. �21�, and using ISVs, based on a phenom-
enological approach, related to a one-dimensional rheological
model, being extended to the three-dimensional case. The 3D
model so developed can be used in a finite element code.

The long-term creep tests were carried out at a reference state,
i.e., with virgin material at ambient temperature, to identify, with
the help of a GA, the constant parameters of the fourth-order
tensors of the three-dimensional viscoelastic model. The depen-
dencies of the temperature and sodium/bath penetration will be
taken into account through the numerical integration performed in
the finite element analysis.

Moreover, while developing a three-dimensional model, it is
imperative to take into account the radial strain of the samples in
the optimization method to, in turn, identify correctly the param-
eters of the constitutive tensors. In fact, if the identification is
performed only with the axial dataset, the parameters found can-
not be used in Eq. �29� to predict the radial strain.

Finally, the number N of anelastic elements, or Kelvin–Voigt
elements, necessary to represent the long-term viscoelastic behav-
ior �creep/relaxation� of carbon materials seems to be related to
the heterogeneity of the latter. A more homogenous structure re-
quires less anelastic elements. This could be linked to the defor-
mation mechanisms proposed by Picard �28� and based on works
performed on similar materials �33–38�.

5 Discussion
Future works will consist mainly of two program phases that

will be developed in parallel. The first will focus on long-term
creep tests at high temperatures in order to determine its influence
on the parameters of the proposed model. The creep tests should
also be extended to the operational condition of a Hall–Héroult
electrolysis cell, i.e., at 950°C under electrolysis. The second
phase will focus on the numerical modeling by adding the vis-
coelastic behavior of the carbon cathode to the elastoplastic be-
havior already implemented by D’Amours et al. �4� �see also
D’Amours �3��. It will be undertaken through the use of the finite
element toolbox, FESH��, which stands for Finite Element Shell
in C�� �8�.

Fig. 8 Hydrostatic and deviatoric creep mechanisms for the GQ material. „–·–… hydrostatic creep strain of the anelastic
mechanism �; „– –… deviatoric creep strain of the anelastic mechanism �; „- - -… total hydrostatic creep strain; „–··–… total
deviatoric creep strain; „—… total creep strain.
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Table 4 Related hydrostatic creep, deviatoric creep, and relax-
ation time coefficients

First anelastic mechanism

K1
�

�MPa h�
�11

−1

�h�
G1

a

�MPa h�
�12

−1

�h�

SG 326,133 1.00643 392,458 1.24955
GQ 2,685,990 2.14236 2,775,940 3.99316
GZ 324,197 6.12911 325,258 5.78861

Second anelastic mechanism

K2
a

�MPa h�
�21

−1

�h�
G2

a

�MPa h�
�22

−1

�h�

SG 4,226,420 3.97864 3,146,470 12.7028
GQ 120,544 1.31235 152,905 1.25115
GZ 2,729,040 0.55790 2,198,060 0.67122

Table 5 Creep Poisson’s ratio

� �creep

SG 0.14 0.26
GQ 0.12 0.07
GZ 0.11 0.11

Fig. 9 Hydrostatic and deviatoric creep mechanisms for the graphitized material. „–·–… hydrostatic creep strain of the anelastic
mechanism �; „– –… deviatoric creep strain of the anelastic mechanism �; „- - -… total hydrostatic creep strain; „–··–… total
deviatoric creep strain; „—… total creep strain.

Fig. 10 Creep Poisson’s ratio of the SG material, based on Eq.
„37…
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Nomenclature
E � Young’s modulus

EH
�
a ,�� � constitutive parameters associated with the ten-

sor �H�
a�

E�
�
a ,�� � constitutive parameters associated with the ten-

sor ���
a�

G�
a−1

� coefficients related to the deviatoric creep
mechanism

�He� � fourth-order elasticity tensor
�H�

a� � fourth-order tensor related to the spring of the
� Kelvin–Voigt element

K�
a−1

� coefficients related to the hydrostatic
mechanism

N � number of Kelvin–Voigt element
T � temperature

�X�� � matrix of eigenvectors
t � time

w � weight
	x�
 � eigenvectors
	z�

a
 � modal coordinates
��� � total strain

��e� � elastic strain
��p� � plastic strain

��ch� � chemical strain
��T� � thermal strain
��a� � anelastic strain
���

a� � anelastic strain
���� � viscous strain

	�SC
 � SC strain
�1 � axial strain
�r � hoop strain

�r
creep � radial creep strain

�1
creep � axial creep strain

�� � eigenvalues
���

a� � fourth-order tensor related to the dashpot of
the � Kelvin–Voigt element

� � Poisson’s ratio
�creep � “creep Poisson’s ratio”

�
� � stess tensor

1 � axial stress

u � crushing strength
� � dissipative potential
� � Helmoltz free energy
 � chemical contamination index
� � Kelvin–Voigt element
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Nonisothermal Transient Flow
in Natural Gas Pipeline
The fully implicit finite-difference method is used to solve the continuity, momentum, and
energy equations for flow within a gas pipeline. This methodology (1) incorporates the
convective inertia term in the conservation of momentum equation, (2) treats the com-
pressibility factor as a function of temperature and pressure, and (3) considers the fric-
tion factor as a function of the Reynolds number and pipe roughness. The fully implicit
method representation of the equations offers the advantage of guaranteed stability for a
large time step, which is very useful for gas pipeline industry. The results show that the
effect of treating the gas in a nonisothermal manner is extremely necessary for pipeline
flow calculation accuracies, especially for rapid transient process. It also indicates that
the convective inertia term plays an important role in the gas flow analysis and cannot be
neglected from the calculation. �DOI: 10.1115/1.2840046�

Keywords: fully implicit method, nonisothermal, compressibility factor, natural gas
pipeline, Joule–Thompson effect, convective inertia term

Introduction
Mathematical models are used to design, optimize, and operate

increasingly complex natural gas pipeline systems. Researchers
continue to develop unsteady mathematical models that focus on
the unsteady nature of these systems. Many related design prob-
lems, however, could be solved using steady-state modeling.

Several researchers attempted different numerical methods to
solve the compressible unsteady one-dimensional flow. Thorley
and Tiley �1� provided an excellent literature review of solution
methods for transient pipeline analysis. Some methods reviewed
included the method of characteristics, the explicit and implicit
finite-difference methods, and finite element methods.

Wylie et al. �2�, and Issa and Spalding �3� used the method of
characteristics. An advantage of the method of characteristics is
that it can handle discontinuities in the simulation �1�. Although
the main disadvantage is that it is comparatively slow, the time
steps are restricted by the stability criterion such that the time step
needs to be small enough to satisfy the Courant condition.

Rachford and Dupont �4� used a Galerkin finite element method
by considering two-dimensional elements in space-time to simu-
late isothermal transient gas flow. This method has not been com-
monly used for gas transient flow modeling because computing
time and the storage requirement are high. On the other hand, this
method can handle some boundary conditions better than finite-
difference methods. The element size, shape, and distribution are
relatively flexible, so that nonuniform internal distribution of
nodal points is possible.

There are several explicit finite-difference methods such as
first-order and second-order approximations. In general, a first-
order approximation is not sufficiently accurate for modeling gas
transients in a pipeline, and so attention is focused on the second-
order methods �1�. The main disadvantage of the second-order
approximation is that these methods require a large amount of
computer time and hence are not suitable for the analysis of large
systems or for the evaluation of unsteady flows over long periods
of time. Poloni et al. �5� used the Lax–Wendroff method, which
used the explicit method.

Wylie et al. �6� presented an implicit finite-difference method
that uses central differences and compared this method with the

method of characteristics. They showed that the implicit method is
very accurate for large time steps and so in the implicit procedure,
the maximum practical time increment is limited by the frequency
of the variables imposed at the boundary conditions, rather than
the stability criterion limit of the method of characteristics.

Heath and Blunt �7� used the Crank–Nicolson method to solve
the conservation of mass and conservation of momentum equa-
tions for slow transients in isothermal gas flow. The main disad-
vantage of this method is that it does not always give a stable
solution according to the Neumann stability analysis of large time
steps for nonlinear problems.

Kiuchi �8� described a fully implicit finite-difference method to
solve isothermal unsteady compressible flow. After neglecting the
convective inertia term in the momentum equation, the von Neu-
mann stability analysis on the finite-difference equations of a pipe
showed that the equations were unconditionally stable. This
method was compared with other methods such as the method of
characteristics, the Lax–Wendroff method, the Guys method, and
the Crank–Nicolson method. This comparison showed that the
fully implicit method was very accurate for a small number of
sections and a large time step. Furthermore, the short computa-
tional time makes this model very appealing for gas pipeline ap-
plications.

Zhou and Adewumi �9� presented a new method for solving
one-dimensional, isothermal transient natural gas flow in a hori-
zontal pipeline without neglecting any terms in the conservation
of momentum equation. In simulating transient flow of single-
phase natural gas in pipelines, most previous investigators had
neglected the convective term in the momentum equation, which
resulted in a loss of accuracy in the simulation results.

Osiadacz and Chaczykowski �10� compared isothermal and
nonisothermal transient models for gas pipelines using constant
compressibility and friction factors, while neglecting the convec-
tive inertia term. They showed that there exists a significant dif-
ference in the pressure profile along the pipeline between isother-
mal and nonisothermal conditions and this difference increases
when the density of the gas increases.

The objective of the current study is to simulate nonisothermal,
one-dimensional compressible flow through a gas pipeline with
more detail by considering �1� the compressibility factor as a
function of pressure and temperature, �2� the friction factor as a
function of the Reynolds number and pipe roughness, and �3� the
convective inertia term in the momentum equation. The continu-
ity, momentum, and energy equations are written in terms of the
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mass flow rate ṁ. This is a matter of convenience since the pri-
mary interest, in this case, is the mass flow rate as a function of
time and location. This is accomplished by replacing the velocity
with the mass flow rate. The method of solution is the fully im-
plicit finite-difference method, which is very suitable for gas pipe-
line simulation because of its large step size and low computation
time �1,8�. The algorithm used to solve the nonlinear finite-
difference equations of a pipe is based on the Newton–Raphson
Method.

Governing Equations
The nonisothermal flow of natural gas in pipelines is governed

by the time-dependent continuity, momentum, and energy equa-
tions, and an equation of state for homogeneous, geometrically
one-dimensional single-phase flow. By solving these equations,
the behavior of gas parameters can be obtained along the pipeline.

Issa and Spalding �3�, Deen and Reintsema �11�, and Thorley
and Tiley �1� developed the basic equations for one-dimensional,
unsteady, compressible flow that include the effects of wall fric-
tion and heat transfer.

In continuity equation,

��

�t
+

�

�x
��v� = 0 �1�

In momentum equation,

�
�v
�t

+ �v
�v
�x

+
�P

�x
= −

w

A
− �g sin � �2�

where

w =
f�v�v�

8
�D

Ouyang and Aziz �12� discussed the friction factor �f� calculation
in detail and applicable ranges of Reynolds number and pipe
roughness for different correlations. In this study, the Colebrook
friction factor equation is used as follows:

f0.5 = − 2 log� �

3.7D
+

2.51

Re f0.5� �3�

This equation is widely used in natural gas industry and is
based on experimental data. It combines both partially and fully
turbulent flow regimes and is most suitable for cases where the
pipeline is operating in transition zone �13�.

In conservation of energy,

�
�h

�t
+ �v

�h

�x
−

�P

�t
− v

�P

�x
=

� + wv
A

�4�

� is the heat flow into the pipe per unit length of pipe per unit
time as follows:

� = −
4UA�T − TG�

D
�5�

In equation of state,

P

�
= ZRT �6�

where Z is the modified form of the formulation of Dranchuck et
al. �14� as

Z = 1 + �A1 +
A2

Tr
+

A3

Tr3��r + �A4 +
A5

Tr
��r2 +

A6

Tr3�r3 �7�

A1–A6 is given in Table 1. To obtain h in terms of P, Z, and T,
Zemansky �15� described the thermodynamic identity

dh = CpdT + �T

�
� ��

�T
�

P

+ 1	dP

�
�8�

The resulting set of equations is

� �P

�t
� + v� �P

�x
� + �Vw

2� �v
�x
� =

Vw
2

CpT

1 +

T

Z
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�T
�

P
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�x
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�
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w
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� �T
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T

Z
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�T
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P
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�x
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2
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P

Z
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�P
�

T
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A
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The parameter Vw is

Vw =� ZRT

�1 −
P

Z
� �Z

�P
�

T

−
P

�CpT

1 +

T

Z
� �Z

�T
�

P
�2	

�12�

The continuity, momentum, and energy equations can then be
written in terms of the mass flow rate ṁ. This is a matter of
convenience since the primary interest, in this case, is the mass
flow rate as a function of time and location. This is accomplished
by replacing the velocity with the mass flow rate.

v =
ṁ

�A
=

ṁZRT

PA
�13�

Therefore �16,17�,

�P
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PA
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Table 1 Coefficients used in compressibility factor equation

A1 A2 A3 A4 A5 A6

0.31506 −1.0467 −0.5783 0.5353 −0.6123 0.6895
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Numerical Formulation Using the Fully Implicit
Method

The fully implicit method consists of transforming Eqs.
�14�–�16� from partial differential equations to algebraic equations
by using finite-difference approximations for the partial deriva-
tives. Figure 1 shows a mesh used in this calculation. The pipe has
�N� nodes and �n� time levels.

The partial derivatives with respect to time are approximated by
�8�

�Y

�t
=

�Yi+1
n+1 + Yi

n+1 − Yi+1
n − Yi

n�
2�t

O��t�2 �17�

The geometric partial derivatives are transformed by �8�

�Y

�x
=

Yi+1
n+1 − Yi

n+1

�x
O��x� �18�

Finally, the individual terms at an interface between the nodes are
approximated by �8�

Y =
Yi+1

n+1 + Yi
n+1

2
�19�

The parameter Y represents P, ṁ, and T in Eqs. �17�–�19�.
Substituting Eqs. �17�–�19� into Eqs. �14�–�16� results in three
sets of equations for each node and without considering node N,
there will be �3N−3� equations for a pipe. The number of un-
known values at time level n+1, which consists of pressure, tem-
perature, and mass flow rate at each node, is 3N. Three equations
will come from boundary condition, and then there are 3N un-
knowns and 3N equations. These equations are nonlinear and the
Newton–Raphson method is applied to solve these equations for
the compressible, nonisothermal transient flows through a pipe.

Solution Comparison With the Kiuchi Result
Kiuchi �8� applied the fully implicit finite-difference method to

the isothermal formulation of the conservation equations:

�P

�t
+

Vw
2

A

�ṁ

�x
= 0 �20�

1

A

�ṁ

�t
+

�

�x
� ṁ2Vw

2

PA2 � +
�P

�x
+ � fVw

2

2DA2� ṁ�ṁ�
P

+
Pg

Vw
2 sin � = 0

�21�

The wave speed Vw in his formulation was �ZRT. The first and
second terms in the momentum equation �Eq. �21�� are the con-
vective terms. In the Kiuchi study, the second term �convective
inertia� was neglected due to the assumption of low flow velocity
with respect to wave speed. In order to compare the model de-
scribed in this study with the results presented by Kiuchi, the
following adjustments were made.

• The convective inertia term was temporarily set to zero.
• The flow field was treated as isothermal.
• The friction factor was assumed to be constant with a value

of 0.008.

The comparison uses the system described by Kiuchi, as illus-
trated in Fig. 2. This system is characterized by a simple straight

pipe segment of 5 km in length with a 500 mm internal diameter
that holds a gas of molecular weight 18.0 at a pressure of 5 MPa.

At time t=10 min, the outlet valve opens and the gas out flow
increases from zero to 300,000 scmh �scmh denotes standard cu-
bic meters per hour�, while the inlet pressure is maintained at
5 MPa. After maintaining this condition for 20 min, the outlet
valve closes. Solutions are performed using different grid densi-
ties �5, 10, 20, 30, 40, 50, 60, …� to ensure a grid-independent
solution. A grid density of 50 is found to be sufficient for this
particular problem.

Kiuchi compared his method with Crank–Nicolson, method of
characteristics, Lax–Wendroff method, and Guys method. The
Crank–Nicolson method gave an unstable solution in the case of a
large time step. Lax–Wendroff method and the method of charac-
teristics use the explicit method and gave a correct answer when
pipes are divided into sufficiently small sections for both rapid
and slow transient phenomena but it took significant computation
time. Kiuchi also showed that Guys method, which uses the im-
plicit method, has good stability for a small time step and has
greatly damped oscillation.

Figures 3–5 compare the results from the current study to those
from the Kiuchi model, Figs. 3�b�, 4�b�, and 5�b�, and show the
variation of flow rates at Node 1 with respect to time for different
time steps. As shown in the figures, the results of the present work
are identical to the Kiuchi solutions. As illustrated in Fig. 6 for
time step �t=0.01 min, the flow rate at the inlet end of the pipe

Fig. 1 Mesh of the solution

Fig. 2 Pipe information and boundary condition for flow
through the valve

Fig. 3 Comparison of present work „a… with Kiuchi model „b…
for �t=1.0 min
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decreases to zero after closing the valve at time 31 min and there-
after, it continues to oscillate around the final value �“0”�. The
oscillation gradually damps to zero in about 60 min. The oscilla-
tion in the flow rate is also found to be symmetrical about the
steady-state value. The maximum value during the oscillation is
0.62�105 m3 /h, while the minimum value is about −0.84
�105 m3 /h.

As the time step decreases, the ability to capture the physically
existing flow oscillation became more apparent. Eventually, this
oscillation damps out due to conservation of mass and momen-
tum.

Now, if the temporal inertia term ��ṁ /�t� in the momentum
equation is neglected, the oscillation will disappear, as shown in
Fig. 7. With a decreasing time step, the impact of the temporal
inertia term increases and the oscillation appears in the results.
Comparing Figs. 3 and 7, as the time step increases, the results
reach when the temporal inertia term is neglected.

Fig. 4 Comparison of present work „a… with Kiuchi model „b…
for �t=0.1 min

Fig. 5 Comparison of present work „a… with Kiuchi model „b…
for �t=0.01 min

Fig. 6 Oscillation on flow rate at closing valve process for
�t=0.01 min

Fig. 7 Variation of inlet flow rate without considering temporal
inertia term in momentum equation �t=0.01 min

Fig. 8 Solution for isothermal model by considering convec-
tive inertia term for „a… �t=1.0 min, „b… �t=0.1 min, and „c… �t
=0.01 min
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Impact of Convective Inertia Term
The Kiuchi study neglected the convective inertia term of Eq.

�21� and assumed a uniform and constant friction factor. The
present study investigates the effect of the convective inertia term
as well as friction term variation. Figure 8 shows the effect of the
time step on the computed flow rate at Node 1 when the convec-
tive inertia term is included. As depicted in Fig. 8, the computed
flow behaves differently at different time steps until the flow
reaches its steady-state conditions. For a large time step, some of
the governing equation terms such as convection inertia term may
not be affected by small disturbances during the sudden closing or
opening of valves, and the calculation may not capture the fluid
flow physics.

In this case, the existence of convection inertia term in momen-
tum equations has no significant effect in the flow, as shown in
Fig. 8 ��t=1.0 min�. On the other hand, for small time step, the
effect of this term is significantly important and plays an impor-
tant role in the fluctuation amplitude and damping prior to reach-
ing the flow to its steady-state condition, as shown in Fig. 8 ��t
=0.1 min and �t=0.01 min�.

When the valve at the outlet end of the pipe is suddenly closed,
the fluid layer upstream of the valve is brought to rest immedi-
ately, which causes the pressure at this point to rise. As the pres-
sure wave gradually travels toward the inlet end, the rate of in-
crease of the pressure at the end point is higher than the locations
upstream of it, thus resulting in a reverse flow. The reverse flow in
turn causes the pressure to decrease, thereby creating an oscilla-
tion in the pressure and flow variation, which depends on the time
step used for simulation, as shown in this figure.

Figure 9 clearly shows the impact of the convective inertia term
and without convective inertia term. As shown in this figure, the
convective inertia term cannot be neglected from the equation
during the opening and closing valve �sudden change�. During the
opening valve event, the gas speed increases suddenly; therefore,
the term of convective inertia term in Eq. �21�, � /�x�ṁ2Vw

2 / PA2�,
becomes more significant. But, during closing valve process, the
mass flow rate drops down and therefore, the gas velocity sud-
denly decreases to zero; at this time, the convective inertia term is
not more significant than before.

With increasing mass flow rate in the pipeline, the speed of gas
increases and therefore, the convective term plays an important
role on the result, as shown in Fig. 10. This affects fluctuation
amplitude results which for 600,000 m3 /h case are more signifi-
cant than 300,000 m3 /h case at closing and opening valve condi-
tion.

Impact of Nonisothermal Condition
The energy equation �Eq. �16�� that is coupled to the momen-

tum and continuity equations is used to account for the tempera-
ture variation along the pipe. Specifically, the governing equations

Fig. 9 Comparison of the result for impact of convective iner-
tia term and without convective inertia for �t=0.1 min

Fig. 10 Comparison of the result for impact of convective inertia term and without
convective inertia for different flow rates and �t=0.1 min
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are solved using the fully implicit method. To validate the noniso-
thermal equation, the steady-state result for temperature is com-
pared with the temperature equation developed by Coulter and
Bardon �18�. The temperature equation is defined as

Tout = �Tin − b�exp�− aL� + b �22�
where

a =
�DU

ṁCP

b = TG + ��J

a
�Pout − Pin

L

In this equation, all units are in British unit. A straight pipe with
the following specifications is considered for our validation:

• pipe length: 100 km
• pipe diameter: 600 mm
• inlet pressure: 6.3 MPa
• outlet pressure: 5.17 MPa
• inlet temperature: 40°C
• ground temperature: 25°C
• overall heat transfer coefficient: 2.84 �W /m2 K�

Figure 11�a� shows the transient variation of temperature along
the pipe. As shown in this figure, as time increases, the tempera-
ture along the pipe becomes more stable where after 300 min
reaches the steady-state condition. At time 300 s, the analytical
given outlet temperature reached the steady state by numerical
calculation �Fig. 12�. As illustrated in Fig. 11�a�, the outlet tem-

perature is changed with time. This variation of temperature is due
to Joule–Thompson effect, which is the temperature change that
occurs during isenthalpic expansion or compression of a gas. In a
pipeline, it causes an expanding gas to cool and a compressed gas
to warm.

The Joule–Thompson coefficient is defined as

�J =
R

CP
�T2

P
�� �Z

�T
�

P

�23�

Figure 11�b� shows the transient variation of Joule–Thompson
coefficient along the pipe. In Eq. �22�, an average Joule–
Thompson coefficient �0.063°R /psi–5.08�10−6°C /Pa� is con-
sidered. Based on this assumption, Fig. 12 illustrates the compari-
son between the temperature result for steady-state condition with
Coulter and Bardon equation �Eq. �22��. As depicted in Fig. 12,
the result of temperature is quietly matched with the Coulter and
Bardon equation.

Now, consider the closure problem discussed earlier to see the
impact of nonisothermal condition. The mass flow rate and pres-
sure boundary conditions are identical to the isothermal case and
also Fig. 13 shows the temperature boundary condition for the
inlet flow as the valve is opened.

The effect of a nonisothermal condition on the flow is illus-
trated in Fig. 14 for different time steps. This figure shows that the
flow rate is significantly affected by the temperature until the flow
reaches the steady-state condition. While the mass flow rate of the
isothermal condition immediately approaches the steady-state
condition, the mass flow rate of the nonisothermal condition
gradually increases until it reaches the steady-state condition. This
occurs because the density varies with respect to temperature. By
opening and closing the valve, the flow, pressure, and temperature
change, and this results in a density change. This density change
propagates gradually from the left side �upstream� of the pipe to

Fig. 11 Variation of temperature „a… and Joule–Thompson coefficient „b… along the pipe
with respect to time

Fig. 12 Temperature comparison for current study and
Coulter–Bardon equation Fig. 13 Temperature boundary condition at Node 1
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the right side �downstream� and causes the other properties to
change. Hence, the temperature effect on the pipeline flow analy-
sis must be taken into account since ambient conditions change
with the seasons. Table 2 illustrates the value of Mach and Rey-
nolds numbers for opening and closing valve condition. As shown
in this table, the value of Mach and Reynolds numbers increases
as the time step decreases. This affects convective inertia term,
which causes more fluctuation. Figure 15 shows the effect of us-
ing the nonisothermal formulation on mass flow rate. This figure
clearly shows that the mass flow rate asymptotically approaches
the steady-state value for the nonisothermal condition because of
changing density with temperature. As shown in this figure, the

fluctuation amplitude remained the same as isothermal condition
because it is just affected by momentum equation.

Figure 16 shows the same effect on the temperature and com-
pressibility variation for �t=0.1 min. Due to the continuous heat
transfer along the pipe, the final temperatures at each node reach a
different value but almost constant. The temperature starts to fluc-
tuate at opening valve condition, and as the time increases, the
temperature reaches the stable condition. This fluctuation is due to
the variation of flow in this period of time. As indicated in Eq. �7�,
we can expect the same behavior explained for compressibility
factor, which is a strong function of temperature and pressure.

Conclusion
This study uses a fully implicit finite-difference method to ana-

lyze transient and nonisothermal flow within a gas pipeline. The
convective term of the momentum equation is included in the
analysis. The numerical results show the following.

• The fully implicit method has advantages, such as the guar-
anteed stability for large time step, which is very useful for
simulating long-term transient in natural gas pipeline.

• As the time step decreases, the ability to capture the physi-

Fig. 14 Solution for nonisothermal condition for „a… �t
=1.0 min, „b… �t=0.1 min, and „c… �t=0.01 min

Table 2 Mach and Reynolds numbers for opening and closing
valve condition

Time step

Opening valve Closing valve

Max Reynolds Max Mach Max Reynolds Max Mach

1 min 14.24�106 0.021 18.61�106 0.027
0.1 min 14.89�106 0.022 21.63�106 0.030
0.01 min 15.78�106 0.023 23.66�106 0.033

Fig. 15 Comparison of the result for impact of convective in-
ertia term „isothermal… and nonisothermal condition for �t
=0.1 min
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cally existing flow oscillation becomes more apparent dur-
ing the opening and closing valve condition �sudden
change�.

• The convective inertia term plays an important role in the
gas flow analysis and cannot be neglected from the calcula-
tion and the effect of this term is more significant when the
mass flow rate increases in the pipe.

• The effect of treating the gas in a nonisothermal manner is
very necessary for pipeline flow calculation accuracies and
is extremely necessary for rapid transient processes.

• The effect of the Joule–Thompson coefficient is significant
on the temperature distribution, and it can be important for a
variety of mass flow rates through the pipe.
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Nomenclature
A 	 cross-sectional area of pipe �m2,ft2�

A1–A6 	 constants for compressibility factor �
�
CP 	 specific heat at constant pressure �J/kg K,

BTU/lbm °R�
D 	 pipe diameter �m, ft�
g 	 gravitational acceleration �m /s2 , ft /s2�
f 	 Darcy friction factor �
�
h 	 specific enthalpy �W /m2 K,BTU / ft2 h °R�
L 	 pipe length �m, ft�
ṁ 	 mass flow rate �kg/s, lbm/h�
n 	 time level �
�
N 	 number of node �
�
P 	 pressure of the gas �Pa, psi �absolute��

Pr 	 reduced pressure �
�
R 	 specific gas constant �J/kg K, BTU/lbm °R�
t 	 time �s�

T 	 temperature �K, °R�
TG 	 ground temperature �K, °R�
Tr 	 reduced temperature �
�
U 	 overall heat transfer coefficient

�W /m2 K,BTU / ft2 h °R�
v 	 velocity of the gas directed along the axis of

the pipe �m/s, ft/s�
Vw 	 isentropic wave speed �m/s, ft/s�
W 	 frictional force per unit length of pipe and per

unit time �N/m, lbf/ft�

x 	 distance along the pipe �m, ft�
Z 	 compressibility factor �
�
� 	 angle of inclination of pipe to the horizontal

�radian�
� 	 density of the gas �kg /m3, lbm / ft3�

�r 	 reduced density �
�
�J 	 Joule–Thompson coefficient �°C/Pa, °R/psi�
� 	 pipe roughness �mm, ft�
� 	 difference �
�
� 	 heat flow �J/m s, BTU/ft h�
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Spectral and Perturbation
Analysis of First-Order Beams
With Notch Damage
The influence of damage on waves propagating in beam structures is investigated through
a numerical model formulated by combining spectral finite elements and perturbation
techniques. The resulting numerical tool allows for an efficient computation of the wave
propagation response and the analysis of the effects of localized damages of various
extents and locations. The dynamic behavior of damaged beams is described through a
first-order model, which couples bending and axial behavior, thus allowing the prediction
of mode conversion phenomena. Damage is modeled as a small, localized reduction of
the beam thickness which, allows for an application of perturbation theory. Numerical
examples in the time and frequency domains are presented to illustrate the model
capabilities. �DOI: 10.1115/1.2839904�

Keywords: damaged beam, notched beam, spectral finite element method, perturbation
techniques, first order beam theory

1 Introduction
Damage detection in structures is one of the objectives of health

monitoring. Analytical models that incorporate the changes in the
structural dynamic characteristic parameters is a very useful tool
for damage localization as well as for the determination of the
defect magnitude.

Literature offers several models for notched beams. Shen and
Pierre �1� proposed a modified Galerkin expansion in order to
study the behavior of beams with pairs of symmetric open cracks.
They validated their model based on finite element models. Luo
and Hanagud �2� and Lestari �3� developed a perturbation tech-
nique for damaged beams. They assumed that the behavior of the
damaged beam is obtained as a perturbation �over a small param-
eter� of the behavior of the undamaged beam. Sharma et al. �4�
extended the perturbation techniques to plates with localized de-
fects.

The spectral finite element method �SFEM�, which is very simi-
lar to the finite element method but is formulated in the frequency
domain, gives a very accurate solution for the dynamic analysis of
structures because it is based on the exact dynamic stiffness ma-
trix by using the exact shape functions �Doyle �5��. Consequently,
SFEM implementation does not require any structural discretiza-
tion to improve the solution accuracy—longer and fewer elements
are needed. Lee et al. �6� presented a review of the SFEM in
structural dynamics. From the transform function point of view,
few types of SFEM were developed: Mahapatra and Gopalakrish-
nan �7� developed a SFE model based on discrete �fast� Fourier
transform �FFT� for laminated composite beams; Mitra and Go-
palakrishnan �8� derived a SFE model based on wavelet trans-
form. FFT based SFEM has problems handling finite structures
�small dimensions� and is valid only when the initial conditions
�displacements and velocities� are zero. Wavelet transform based
SFEM overcomes the above two restrictions and do not have sig-
nal processing errors due to wraparound or aliasing problems.
Kumar et al. �9� developed and implemented a SFE model to
describe the behavior of a first-order shear deformation beam with

embedded transverse crack. The cracked region is discretized into
few internal elements, and the internal nodes are condensed out
based on the continuity of displacements and governing equations.
Ostachowicz and Krawczuk �1991� �10� studied the effects of
cracks on the natural frequencies of a cantilever beam. They cal-
culated the equivalent stiffness in the crack and the natural vibra-
tion frequencies of a beam with two cracks. Krawczuk et al. �11�
introduced a finite spectral element of a cracked Timoshenko
beam. The crack is substituted by a dimensionless and massless
spring, whose bending and shear flexibilities are calculated using
Castigliano’s theorem and laws of the fracture mechanics.

This paper presents the application of SFEM in conjunction
with the perturbation analysis of damaged beams. In contrast to
the approach of Krawczuk et al. �11�, damage is modeled as a
thickness reduction of small extent, which allows the introduction
of a perturbation parameter �. The application of perturbation
techniques yields a set of differential equations, corresponding to
increasing orders of �, which are solved through the application of
SFEM. The model considers a first-order deformation theory, with
strain varying linearly across the thickness. This leads to a set of
two equations governing bending and axial motions of the beam.
In the absence of damage, the two equations are completely un-
coupled as predicted by the elementary beam theory, whereas
damage causes coupling and mode conversion phenomena to oc-
cur. This is a noteworthy aspect of the study, which shows how a
simple beam formulation can be employed to predict and analyze
mode conversions caused by damage. The solution technique is
validated by comparing its predictions with those of a model de-
veloped in the commercial code ABAQUS and with solutions from
the modal superposition �SM� approach. The SFEM is introduced
as a general framework that combines the advantages of conven-
tional finite elements with the computational efficiency of analyti-
cal techniques. The modal superposition technique can easily
handle only simple geometries with reasonable computational
costs, which limits its applicability. For this reason, it is here only
used for validation purposes on simple geometries and cannot be
considered as a general tool for the simulation of wave propaga-
tion in damaged structures. In contrast, the combination of SFEM
and perturbation analysis lends itself to the analysis of complex
waveguides affected by small defects.

The paper is organized as follows. The brief introduction pre-
sented in this section is followed by the derivation of the govern-
ing equations and corresponding boundary conditions for the
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notched beam based on the Hamilton principle and perturbation
techniques �Sec. 2�. Section 3 presents the methodology followed
in solving the perturbation equations through SFEM, while Sec. 4
presents numerical results obtained from the analysis. Validation
results, as well as time domain and frequency domain simulations,
illustrate the effect of the considered type of damage on the dy-
namic behavior of the beam. Finally, Sec. 5 summarizes the main
results of the work and outlines current and future research direc-
tions.

2 Perturbation Equations for a Beam With Notch
Damage

The dynamic behavior of the notched beam shown in Fig. 1 is
described by a set of governing equations derived through the
Hamilton principle. The defect is modeled as a reduction in thick-
ness of depth hd, extending over a length �l, placed at the distance
xd. According to Fig. 1, x� �0,L� denotes the horizontal coordi-
nate, whereas the vertical coordinate z varies in the following
interval:

z � �−
h

2
,
h

2
„1 − 2��d�x�…� �1�

where �=hd /h and �d�x� is a damage function defined as

�d�x� = H„x − �xd − �l�… − H�x − xd� �2�

with H denoting the Heaviside function.
The governing equations for the notched beam and the appro-

priate set of boundary conditions are derived using the Hamilton
principle. The required kinetic and strain energies and the work of
external forces are formulated using the following kinematic as-
sumptions:

u�x,z,t� = u�x,t� − z
�w

�x

w�x,z,t� = w�x,t� �3�

where u�x , t� and w�x , t� are the axial and transverse displace-
ments in the reference plane z=0, respectively. The linear strain-
displacement relations are

�xx�x,z,t� = u,x�x,t� − zw,xx�x,t�

�zz�x,z,t� = 0, �xz�x,z,t� = 0 �4�

where the subscript ,x denotes a partial derivative with respect to
x. The constitutive relation is assumed to be of the well known
form

�xx�x,z,t� = E�xx�x,z,t� �5�

where �xx is the normal stress in the x direction and E is the
Young’s modulus. Accordingly, the axial force resultant and bend-
ing moment resultant are expressed as

Nxx�x,t� = b�
−h/2

h/2„1−2��d�x�…

�xx�x,z,t�dz = Ehbu,x + �− u,x

+ w,xx
h

2
�Ebh�d�x�� �6�

Mxx�x,t� = b�
−h/2

h/2„1−2��d�x�…

z�xx�x,z,t�dz = − E
bh3

12
w,xx + �− u,x

+ w,xx
h

2
�E

bh2

2
�d�x�� �7�

Hamilton’s principle

�
t1

t2

��U − T + V�dt = 0 �8�

requires the derivation of the first variation of the beam’s strain
and kinetic energies and of the work of the external forces, which,
in this case, are given by

�T = − b�
0

L�
−h/2

h/2„1−2��d�x�…

��ü�u + ẅ�w�dzdx

= − b��
0

L �üh�1 − ��d�x�� + ẅ,x
h2

2
��d�x�	�udx

− b��
0

L �− �ü
h2

2
��d�x� + ẅ,x

h3

12
�1 − ��d�x���

,x

+ ẅh�1 − ��d�x��	�wdx

− b�
�ü
h2

2
��d�x� + ẅ,x

h3

12
�1 − ��d�x��	�w


x=0

x=L

�9�

�U = b�
0

L�
−h/2

h/2„1−2��d�x�…

�xx�x,z,t���xx�x,z,t�dzdx

= b�
0

L�
−h/2

h/2„1−2��d�x�…

�xx���u�,x − z��w�,xx�dzdx

= b�
0

L

�Nxx�x,t���u�,x − Mxx�x,t���w�,xx�dx = �bNxx�x,t��u�x=0
x=L

− b�
0

L

Nxx,x�x,t��udx − b��Mxx�x,t���w�,x − Mxx,x�x,t��w��x=0
x=L

− b�
0

L

Mxx,xx�x,t��wdx �10�

and

�V = −�
0

L

�n�x,t��u + q�x,t��w + m�x,t���w�,x�dx

− �
j=1

N �
0

L

�Nj�t��u + Qj�t��w + Mj�t���w�,x���x − xj�dx

= −�
0

L �n�x,t� + �
j=1

N

Nj�t���x − xj���udx

−�
0

L �q�x,t� − m,x�x,t� + �
j=1

N

Qj�t���x − xj�

Fig. 1 Beam geometry
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− �
j=1

N

Mj�t�„��x − xj�…,x��wdx

− 
�m�x,t� + �
j=1

N

Mj�t���x − xj���w

x=0

x=L

�11�

where, for simplicity, we assume that the loads are applied along
the reference plane z=0. Also, in Eq. �11�, n�x , t� and q�x , t� re-
spectively denote axial and transverse distributed external loads,
m�x , t� denotes a distributed bending moment distribution, while
Nj�t�, Qj�t�, and Mj�t� are external concentrated longitudinal and
vertical loads, and bending moment applied at N locations x=xj.

Finally, � is the Dirac delta function and ¨ denotes the second
order partial derivative with respect to t.

The application of Hamilton’s principle yields the following set
of differential equations:

Nxx,x�x,t� − �h�1 − ��d�x��ü − �
h2

2
��d�x�ẅ,x = f1�x,t�

�12�

Mxx,xx�x,t� + ��ü
h2

2
��d�x� + ẅ,x

h3

12
�1 − ��d�x��	

,x

− �h�1 − ��d�x��ẅ = f2�x,t�

where f1�x , t� and f2�x , t� are respectively defined as

f1�x,t� = − n�x,t� − �
j=1

N

Nj�t���x − xj�

�13�

f2�x,t� = − q�x,t� + m,x�x,t� − �
j=1

N

Qj�t���x − xj�

+ �
j=1

N

Mj�t���x − xj��,x

The associated boundary conditions, at x=0 and x=L, are

Nxx�x,t� = 0 or u�x,t� given

bMxx,x�x,t� + �I0ẅ,x�x,t� − m�x,t�

− �
j=1

N

Mj�t���x − xj� = 0 or w�x,t� given �14�

Mxx�x,t� = 0 or w,x�x,t� given

Equations �12� can be conveniently expressed in the frequency
domain through the Fourier transform �FT� of the applied gener-
alized loads f j�x , t� �with j=1,2�, which can be expressed as

f j�x,t� = �
k

f̂ jk
�x,�k�ei�kt �15�

where i=�−1 and f̂ jk
�x ,�k� denotes the harmonic component of

the generalized load at frequency �k �5�. Accordingly, the beam’s
displacements can be written as

u�x,t� = �
k

ûk�x,�k�ei�kt �16�

w�x,t� = �
k

ŵk�x,�k�ei�kt �17�

where ûk�x ,�k�, and ŵk�x ,�k� are the displacements correspond-
ing to the kth harmonic component of the load. For simplicity, in
the remainder of the paper, the subscript k is dropped so that �k
=� , ûk�x ,�k�= û�x ,��, and ŵk�x ,��= ŵ�x ,�� are adopted.

Next, the axial and vertical displacements of the beam in the
reference plane are considered as perturbations �over the small
parameter �� of the axial and vertical displacements of the undam-
aged beam,

� û�x,��
ŵ�x,�� 	 = � û�0��x,��

ŵ�0��x,�� 	 − �� û�1��x,��
ŵ�1��x,�� 	 − O��2� �18�

Replacing Eqs. �6�, �7�, and �18� into the differential system Eq.
�12� and collecting the coefficients of �0 and �1 yields the follow-
ing set of differential equations:

�0: �m�2 0

0 m�2 �� û�0��x,��
ŵ�0��x,�� 	 + �EA 0

0 − �I0�2 �� û,xx
�0��x,��

ŵ,xx
�0��x,�� 	

+ �0 0

0 − EI0
�� û,4x

�0��x,��
ŵ,4x

�0��x,�� 	 =� f̂1�x,��

f̂2�x,��
	 �19�

�1: �m�2 0

0 m�2 �� û�1��x,��
ŵ�1��x,�� 	 + �EA 0

0 − �I0�2 �� û,xx
�1��x,��

ŵ,xx
�1��x,�� 	

+ �0 0

0 − EI0
�� û,4x

�1��x,��
ŵ,4x

�1��x,�� 	 = �ĝ1�x,��
ĝ2�x,�� 	 �20�

where I=bh3 /12, A=bh, � is the density per unit area, m is the
beam mass, and

�ĝ1�x,��
ĝ2�x,�� 	

= � − m�2�d�x,�� 0

−
mh

2
�2�d,x�x,�� − m�2�d�x,�� �� û�0��x,��

ŵ�0��x,�� 	
+ � − EA�d,x�x,��

mh

2
�2�d�x,��

− EA
h

2
�d,xx�x,�� −

mh

2
�2�d�x,�� 3�I0�2�d,x�x,�� �

	� û,x
�0��x,��

ŵ,x
�0��x,�� 	

+ � − EA�d�x,�� EA
h

2
�d,x�x,��

− EAh�d,x�x,�� 3EI0�d,xx�x,�� + �I0�2�d�x,��
�

	� û,xx
�0��x,��

ŵ,xx
�0��x,�� 	 + � 0 EA

h

2
�d�x,��

− EA
h

2
�d�x,�� 6EI0�d,x�x,�� �

	� û,3x
�0��x,��

ŵ,3x
�0��x,�� 	 + �0 0

0 3EI0�d,x�x,�� �� û,4x
�0��x,��

ŵ,4x
�0��x,
� 	

�21�
Equations �19� and �20� can be solved for an assigned set
of loads in terms of the unknown displacements û�0��x ,��
= �û�0��x ,�� ŵ�0��x ,���T and their first-order perturbation
û�1��x ,��= �û�1��x ,�� ŵ�1��x ,���T.

Fig. 2 Spectral finite element with nodal displacements and
loads
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Fig. 3 „a… Schematic of the clamped-free beam with a longitu-
dinal tip load, modeled using two spectral elements. „b… Modu-
lated sinusoidal pulse load in time and frequency domains

Fig. 4 Comparison between FEM and SFEM results: „a… longi-
tudinal and „b… transverse displacements at the free end of the
notched beam with a defect at xd=L /2

Fig. 5 Comparison of ABAQUS and SFEM group velocities

Fig. 6 Schematic of the simply supported beam with a longi-
tudinal load at the middle, used to compare the superposition
of modes and SFEM results

Fig. 7 „a… Longitudinal and „b… transverse displacements at
the midlength of notched beams with a defect at xd=3L /4
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3 Spectral Finite Element Discretization
The equation for the �0 term corresponds to the governing

equation for the undamaged beam; the first-order perturbation
equation has the same form and features an applied generalized
load that is a function of the solution of the �0 equation. A com-
mon strategy for the solution of the two equations �Eqs. �19� and
�20�� deriving from the expansion of the beam’s displacements in
terms of the perturbation parameter can be adopted based on their
formally identical form. Each of the equations can, in fact, be
written in the following matrix form:

�m�2 0

0 m�2 �� û�x,��
ŵ�x,�� 	 + �EA 0

0 − �I�2 �� û,xx�x,��
ŵ,xx�x,�� 	

+ �0 0

0 − EI
�� û,4x�x,��

ŵ,4x�x,�� 	 = �q1�x,��
q2�x,�� 	 �22�

or

Mû�x,�� + E1û,xx�x,�� + E2û,4x�x,�� = q�x,�� �23�

The weak form solution of Eqn. �23� can be sought through mul-
tiplication by a suitable test function v�x ,��T,

�
0

Lj

vT�x,��Mû�x,��dx −�
0

Lj

v,x
T �x,��E1û,x�x,��dx

+�
0

Lj

v,xx
T �x,��E2û,xx�x,��dx =�

0

Lj

vT�x,��q�x,��dx

�24�

where Lj is the length of an element j that connects two nodes
�Fig. 2�. The behavior of each node is described by three degrees
of freedom �DOFs�, so that the element’s vector of DOFs is de-
fined as d j = û1j , ŵ1j , ŵ1j,x , û2j , ŵ2j , ŵ2j,x�T. The displacement
û�x ,�� within element j is obtained as an interpolation of the
nodal DOFs d j,

û�x,�� = N j�x,��d j��� �25�

where N j�x ,�� is the matrix of the dynamic shape functions,
which is obtained from the solution of the homogeneous govern-
ing equation

N j�x,�� = ����G j�x,��T j
−1��� �26�

where ���� is an amplitude ratio matrix,

Fig. 8 Displacements as a function of longitudinal coordinate at the same moments: „a… SFEM longitudinal
displacement, „b… SM longitudinal displacement, „c… SFEM transverse displacement, and „d… SM transverse
displacement
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���� = �1 0 0 1 0 0

0 1 1 0 1 1
� �27�

G j�x ,�� is defined as

G j�x,�� = �
e−ikx 0 0 0 0 0

0 e−�x 0 0 0 0

0 0 e−��Lj−x� 0 0 0

0 0 0 e−ik�Lj−x� 0 0

0 0 0 0 e−i�x 0

0 0 0 0 0 e−i��Lj−x�

�
�28�

whereas T j��� is obtained by imposing the displacements at the
nodes,

T j��� = �
1 0 0 e−ikLj 0 0

0 1 e−�Lj 0 1 e−i�Lj

0 − � − �e−�Lj 0 − i� i�e−i�Lj

e−ikLj 0 0 1 0 0

0 e−�Lj 1 0 e−i�Lj 1

0 − �e−�Lj � 0 − i�e−i�Lj i�

�
�29�

with k2=�2 /c2=�2m /EA and �4=�2m /EI0.

The dynamic shape functions provide the exact displacement
variation along the beam if the external loads are concentrated at
the nodal locations �5�. In the case considered here, it can be
shown that the generalized load in the first-order perturbation
equations reduces to a concentrated nodal load if a node is placed

Fig. 9 Displacements as a function of time and horizontal co-
ordinates: „a… longitudinal displacement and „b… transverse dis-
placement. The length of the notch is �l=0.01 m.

Fig. 10 Displacements as a function of horizontal coordinate
at the same moments: „a… longitudinal displacement and „b…
transverse displacement

Fig. 11 Longitudinal velocity at the midlength for undamaged
beam and notched beams with a defect at xd=5L /8 and xd
=6L /8

031019-6 / Vol. 75, MAY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



at the damage location. Accordingly, the solution of homogeneous
beam equations and proper description of nodal loads correspond-
ing to the presence of damage based on the formulation presented
above can be used to obtain exact dynamic shape functions and
accurate representations of the beam’s displacements in the fre-
quency range corresponding to the applied load. This approach
can also be applied when loads are generally distributed along the
element length. In this case, the dynamic shape functions do not
reproduce exactly the displacement field within the element, and
some approximation is introduced. The application of nodes at
damage and load locations does not cause a dramatic increase in
the computational time, and the presented modeling approach still
represents an efficient tool for the analysis of wave propagation in
the considered class of damaged structures. Refinements of the
formulation, allowing the accurate representation of general load
distributions and of damage locations within the element, are un-
der development and will be discussed in future papers.

The dynamic interpolation functions can also be used for the
test function v. Substitution in the weak form of the equation
yields the following algebraic equation:

K j���d j��� = f j��� �30�

where K��� j is the element stiffness matrix at frequency �, de-
fined as,

K j��� =�
0

Lj

N j
T�x,��MN j�x,�� − N j,x

T �x,��E1N j,x�x,��

+ N j,xx
T �x,��E2N j,xx�x,���dx �31�

and where f is the vector of applied nodal loads

f j��� =�
0

Lj

N j
T�x,��q�x,��dx �32�

4 Numerical Examples
In this section, the developed technique is applied to evaluate

longitudinal and transverse wave propagations in damaged beams.
The solution based on SFEM is first validated through compari-
sons with the predictions of a model developed in ABAQUS. The
case of a simply supported beam solved through the modal super-
position approach is then used as a base line for comparison.
Upon assessment of the accuracy of the procedure, simulations in
the time and frequency domains are performed for various sets of
boundary conditions, excitation configurations, and damage extent
and location to show the potential of the technique as a general
simulation tool and to highlight interesting phenomena related to
the interaction of propagating waves with damage.

Fig. 12 „a… Transverse velocity at the midlength of an undam-
aged beam and notched beams with a defect at xd=5L /8 and
xd=3L /4. „b… Details of reflections caused by damage.

Fig. 13 „a… Longitudinal velocity at the midlength of notched
beams with a defect length, �l=0.001 m, 0.005 m, and 0.01 m.
„b… Details of reflections caused by damage.
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Technique Validation

SFEM Versus ABAQUS Predictions. A detailed finite element
model of the damaged beam is developed using the commercial
software ABAQUS. The considered beam is assumed in a clamped-
free configuration, and has length L=1 m, thickness h=10
	10−3 m, and width b=50	10−3 m. The beam is made of alu-
minum �Young’s modulus E=70 GPa and density �
=2750 kg /m3� and features a notch of length �l=1	10−3 m and
depth hd=h /2 at xd=L /2. The beam is modeled using 10,000
four-node bilinear plane stress quadrilateral elements, and its re-
sponse is computed through an explicit dynamic analysis. The
same beam is modeled using two spectral finite elements, as
shown in Fig. 3�a�. The considered excitation is a four-cycle sinu-
soidal burst at 75 kHz, modulated by a Hanning window �Fig.
3�b��, applied at the free end on the beam in the longitudinal
direction according to the configuration shown in Fig. 3�a�.

Figures 4�a� and 4�b� compare longitudinal and transverse dis-
placements at the free end of the beam as obtained using SFEM
and ABAQUS. The longitudinal responses in Fig. 4�a� show an
excellent agreement, both in terms of amplitude of the incident
wave and of the reflected wave produced by the damage and in
terms of time of arrival of the reflected waves. Figure 4�b� pre-
sents the comparison between corresponding transverse displace-
ments. Both SFEM and ABAQUS models predict the generation of
a transverse displacement component upon interaction of the lon-

gitudinal wave with the defect, which indicates that mode conver-
sion has taken place. The time lag between the models can be
explained by the fact that a simple Euler–Bernoulli formulation
has been employed for SFEM. It is well known that the Euler–
Bernoulli theory overestimates the wave speeds in comparison
with more refined beam theories, such as the Timoshenko formu-
lation �5�. The ABAQUS model does not rely on beam theory and
can be considered as a more accurate description of the dynamic
behavior due to the highly refined mesh employed for the analy-
sis. The discrepancies in terms of wave velocities is estimated
from the dispersion relations predicted by the two models. The
dispersion relation in SFEM follows the Euler–Bernoulli relation
k= ��2EI /�A�1/4, while that of the ABAQUS model needs to be
evaluated by means of a numerical experiment. Specifically, the
beam is excited by a broadband pulse, and its response in the time
domain is recorded at all the nodal points available along the
beam span. This allows the computation of two-dimensional FT in
space and time, which provides wave number and frequency in-
formation over the considered frequency range. These data are
then used to estimate the group velocity variation in terms of
frequency and to compare it with the SFEM one. The result of this
analysis is presented in Fig. 5: The mismatch in group velocities
observed at the excitation frequency of 75 kHz corresponds to the
time delay observed in the time plots of Fig. 4�b�.

SFEM and Modal Superposition Results. A second validation is
carried out through comparisons with the modal superposition so-
lution of the perturbation equations �Eqs. �20� and �21��. The
modes of the considered structure are used to decouple the equa-

Fig. 14 „a… Transverse velocity at the middle point of the beam
for three values of damage length, �l=0.001 m, 0.005 m, and
0.01m. „b… Details of reflections caused by damage.

Fig. 15 Displacements as a function of time and longitudinal
coordinates: „a… longitudinal displacement and „b… transverse
displacement. The length of the notch is �l=0.001 m.
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tions of motion and to obtain time-domain ordinary differential
equations �ODEs� in terms of the modal coordinates. The convo-
lution integral is then employed for the time-domain solution,
given the assigned excitation time history and the corresponding
modal loads. This approach, very well known and established,
does not provide the generality of the SFEM and can only be
conveniently applied in the case of simple geometries. The con-
sidered configuration is that of the beam in Fig. 6, which is ex-
cited longitudinally at midspan by a four-cycle modulated sinu-
soidal burst at 500 kHz. The corresponding longitudinal and
transverse midspan displacements in Fig. 7 show the agreement
between the solutions and confirm that the interaction with the
damage partially converts the longitudinal wave into a transverse
one.

The second validation example considers a notch placed at xd
=3L /8 and a transverse load at midspan. Figure 8 compares snap-
shots of the beam deflected configuration �longitudinal and bend-
ing components� at various instants of time. The plots show how
longitudinal displacements are produced by the interaction of the
bending wave with the defect and confirm the good agreement
between SFEM and mode superposition solutions.

Time-Domain Results. The first example in the time domain
considers a simply supported beam with a notch at xd=3L /4 and
a vertical load at xf =L /2. The beam has the same geometry and
material properties as described in the previous section. The beam
is modeled using four spectral elements, as shown in Fig. 6. The
beam response computed through the SFEM model is presented in
Fig. 9 both in time and space as a color map plot, while Fig. 10

shows snapshots of the displacements’ variation along the beam at
three instants of time. In both figures, the axial displacement is
plotted in the subplot �a�, and the transverse displacement is dis-
played in subplot �b�. The applied transverse load generates a
transverse wave, which propagates from the middle of the beam in
both directions. When the wave reaches the notch, it is partially
reflected and partially gets converted into a longitudinal wave
originating at the notch location. Figures 11 and 12 show the time
variation of longitudinal and transverse velocities at the middle of
the beam for two different defect positions �xd=5L /8 and xd
=3L /4�, and compare them directly with the velocity of the un-
damaged beam. As expected, the arrival time of the wave that is
reflected from a defect closer to the applied load is smaller, and
the amplitude of the wave is higher due to the dissipation added to
the model. Details of the reflected transverse waves for different
damage locations are shown in Fig. 12�b�. The influence of the
notch length on the axial and transverse velocities is shown in
Figs. 13 and 14, which illustrate how the arrival time of both
reflected waves does not change with the damage axial length and
how the amplitude of the waves instead increases proportionally
with the notch length.

A second problem considers a clamped-free beam with a notch
at xd=3L /4 and a horizontal load at xf =L. The beam is modeled
using two spectral elements with a total of nine DOFs. �Fig. 3�a��.
The considered applied load is again a modulated sine burst at
500 kHz. Figure 15 presents 3D surfaces of the displacements �as
functions of time and longitudinal coordinate�, whereas Fig. 16
presents snapshots of displacement variations along the beam
length at three instants of time. In both cases, the axial displace-

Fig. 16 Displacements as a function of longitudinal coordi-
nate at the same moments: „a… longitudinal displacement and
„b… transverse displacement

Fig. 17 Displacements at the tip of a cantilever beam in the
frequency domain. Case I: horizontal load. „a… Longitudinal dis-
placement and „b… transverse displacement.
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ment is plotted in the subplot �a� and the transversal displacement
is plotted in subplot �b�. A longitudinal load causes a longitudinal
wave to propagate from the tip of the beam. When the wave
reaches the notch �in this case at x=3L /4�, it is partially reflected
and partially converted into a transversal wave originating at the
notch location.

Frequency Domain Results. The SFEM can be conveniently
used to obtain results in the frequency domain, upon transforma-
tion of the applied load and direct solution for the nodal ampli-
tudes at each frequency. Frequency sweeps of unit amplitude
loads are considered to obtain frequency response function �FRF�
predictions. Examples of this kind of analyses are presented in
this section.

The frequency response of a clamped-free beam with a unit
harmonic tip load is evaluated in the presence of a notch at xd
=3L /4, of length �l=1	10−2 m, and depth hd=h /10. Figure 17
shows FRFs corresponding to a longitudinal load of frequency
varying in the 5–10 kHz range. Both longitudinal and transverse
response components resulting from a longitudinal load are pre-
sented. Specifically, Fig. 17�a� compares the responses for dam-
aged and undamaged beams and shows how the small localized
notch produces small changes in the frequency domain and, par-

ticularly, how the location of the resonant peaks is shifted by a
negligible amount. This confirms the notion that the considered
type of damage does not significantly modify the natural frequen-
cies of the structure, even in a high frequency range as considered
here. The changes in natural frequencies due to notch damage in
beams and plates are quantified respectively in Lestari �3� and
Sharma et al. �4�, where it is essentially shown how perturbations
O��� in the mode shapes correspond to the O��2� change in the
natural frequencies. The transverse response in Fig. 17�b� again
demonstrates the intermodal coupling between longitudinal and
transverse motions. The peaks in the plot correspond both to the
bending frequencies of the beam and to the longitudinal ones, the
latter being excited by the considered axial excitation. The results
for a transverse tip load shown in Fig. 18 lead to similar conclu-
sions and confirm the observations made in commenting on the
previous figure.

5 Conclusions
The dynamic behavior of the damaged beams is investigated

through the perturbation techniques. The governing equations of a
first-order coupled beam are derived using the Hamilton principle.
A spectral element formulation based on the exact dynamic stiff-
ness matrix is used to determine the solution. The SFEM solution
is validated by a comparison with a superposition of mode model.
The influence of geometry parameters on the results are investi-
gated. The results show reflections of the waves and coupling
between the longitudinal and transversal displacements and ve-
locities due to the notch presence.
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The buckling of a column affected by both an internal hinge and
an elastic foundation is studied analytically. It is found that the
elastic foundation raises the buckling force, but nonlinearly. The
optimum locations for the hinge are determined.
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Introduction
Buckling of columns is basic in elastic stability �1�. However,

in some cases the column may have an added interior joint or
hinge due to the ease of construction/transportation or an equiva-
lent hinge due to a through crack. The buckling of uniform col-
umns with an internal hinge was first considered by Wang �2� and
recently by Wang �3�. The present paper studies the buckling of a
column with an interior hinge and in addition supported by a
continuous elastic foundation. The results are important for the
design of embedded pilings, drill strings, and structures on foun-
dations, such as railroad tracks.

Although the formulation and the method of solution are
simple, the results are complex. This paper contributes to the de-
termination of optimum hinge locations for various foundation
stiffnesses and will be useful in the design of load bearing col-
umns.

Formulation
The equation governing small deflections of a column under

axial load and supported by a linear elastic �Winkler� foundation
is �4,5�

EI
d4y�

dx�4 + N�
d2y�

dx�2 + k�y� = 0 �1�

Here, EI is the flexural rigidity of the beam, N� is the axial com-
pressive force, k� is the elastic constant of the foundation, and
�x� ,y�� are axial and lateral coordinates. Normalize all lengths by
the length of the column L and drop primes. Equation �1� becomes

d4y

dx4 + N
d2y

dx2 + ky = 0 �2�

where N=N�L2 /EI is the normalized force and k=k�L4 /EI is the
normalized foundation elastic constant. The general solution to
Eq. �2� can be classified into three types.

1. If N2�4k, then the solution is a linear combination of the
functions

y = �sin��x�,cos��x�,sin��x�,cos��x�� �3�

where

� =�N − �N2 − 4k

2
� =�N + �N2 − 4k

2
�4�

2. If N2=4k, then the solution is composed of

y = �sin��x�,cos��x�,x sin��x�,x cos��x�� �5�

where �=�N /2.
3. If N2�4k, the solution is

y = �e−ax cos�bx�,e−ax sin�bx�,eax cos�bx�,eax sin�bx��
�6�

where

a = k1/4 cos��/2�, b = k1/4 sin��/2� �7�

and

� = � − tan−1��4k − N2

N
	 �8�

The ends of the column may be clamped, pinned, or free. Let the
internal hinge be at x=c and the subscripts 1, 2 denote the seg-
ments 0�x�c and c�x�1, respectively. At the hinge, the de-
flections are continuous, the moments are zero, and the shears are
equal, i.e.,

y1 = y2 �9�

d2y1

dx2 = 0 �10�

d2y2

dx2 = 0 �11�

d3y1

dx3 + N
dy1

dx
=

d3y2

dx3 + N
dy2

dx
�12�

Solution
There are six combinations of end conditions. These are

clamped-clamped, clamped-pinned, clamped-free, pinned-pinned,
pinned-free, and free-free.

If the end at x=0 is clamped, the displacement and slope are
zero there. The solution is different for N2�4k, N2=4k, N2�4k,
respectively,

y1 = 

C1�� sin��x� − � sin��x�� + C2�cos��x� − cos��x��

C1x sin��x� + C2�sin��x� − �x cos��x��
C1 sinh�ax�sin�bx�

+ C2�b sinh�ax�cos�bx� − a cosh�ax�sin�bx��
�
�13�

If the end is pinned, the displacement and the moment are zero.
The solution is

y1 = 
 C1 sin��x� + C2 sin��x�
C1 sin��x� + C2x cos��x�

C1 sinh�ax�cos�bx� + C2 cosh�ax�sin�bx�
� �14�

If the end is free, the moment and shear are zero. After some
work, we find
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y1 = 
 C1���N − �2�sin��x� − ��N − �2�sin��x�� + C2��2 cos��x� − �2 cos��x��
C1��N − 3�2�sin��x� − ��N − �2�x cos��x�� + C2�2 cos��x� + �x sin��x��

C1�b�N − b2 + 3a2�sinh�ax�cos�bx� − a�N + a2 − 3b2�cosh�ax�sin�bx�� + C2�2ab cosh�ax�cos�bx� − �a2 − b2�sinh�ax�sin�bx��
�
�15�

For the end at x=1, one can replace x by �x−1� in the above forms. For example, if the x=1 end is clamped, form Eq. �13�,

y2 = 
 C3�� sin���x − 1�� − � sin���x − 1��� + C4�cos���x − 1�� − cos���x − 1���
C3�x − 1�sin���x − 1�� + C4�sin���x − 1�� − ��x − 1�cos���x − 1����

C3 sinh�a�x − 1��sin�b�x − 1�� + C4�b sinh�a�x − 1��cos�b�x − 1�� − a cosh�a�x − 1��sin�b�x − 1���
� �16�

The other forms are similarly constructed.
Given the location of the hinge c, the conditions Eqs. �9�–�12�

are applied. For nontrivial solutions, a 4�4 characteristic deter-
minant is obtained. The lowest eigenvalue N is the buckling load.

Results
Figure 1 shows the buckling force as a function of hinge loca-

tion for the clamped-clamped case. When the foundation is absent,
the buckling condition is governed by the equation �2�

tan�c�N� + tan��1 − c��N� − �N = 0 �17�

The maximum buckling force is 31.324 at c=0.2193, and due to
the symmetry, also at c=0.7807. These are optimum hinge loca-
tions where the stability of the column is maximized. The mini-
mum is 9.870 when the hinge is at the midpoint. When a founda-
tion exists, the buckling force is increased, but unevenly. The
optimum location shifts to the side, and the midpoint is no longer
the weakest location. Table 1 shows the optimum location �one
side only� for various foundation stiffnesses k.

Also shown in Fig. 1 are the mode shapes. Due to the hinge, the
modes are more difficult to define, and change subtly as k is
increased. In comparison, for a column without a hinge, there are
distinct mode changes in integer wave numbers.

The clamped-pinned case does not have midpoint symmetry. If
there is no foundation, the buckling force is from the smaller root

of the following equations:

�tan�c�N� − tan �N = 0

tan�c�N� − �N = 0
 �18�

The maximum buckling force is 20.1907 at c=0.30084, where the
two forms of Eq. �18� intersect. The minimum is zero at c=1
where an infinitesimal swivel is created by the hinge and the
pinned end. This phenomenon, the swivel of two closely spaced
hinges, was also noted by Sawyer �6�, who studied the stability of
a column caused by a short hinged link. Figure 2 shows the in-
crease of buckling force due to the foundation. Note that for k
�100, the optimum location stays at c=0.301 with no change in
maximum buckling force. For k�100, the optimum location is
closer to the clamped end.

Figure 3 shows the results for the clamped-free case. Without a
foundation, the buckling force is zero since a hinge and the free
end would rotate freely. With a foundation, the buckling force is
nonzero except when c=1. The optimum location is either at the
clamped end or at some interior location, which moves toward the
free end as foundation stiffness increases.

Table 1 Optimum locations for the clamped-clamped case

k 0 250 404 500 750 1000

copt 0.219 0.123 0 0.022 0.053 0.066
Nmax 31.32 40.77 50.25 55.86 67.65 76.35

Fig. 1 Buckling force as a function of hinge location for the
clamped-clamped case. The dashes lines show locus of maxi-
mum buckling forces and optimum locations. Typical buckling
shapes are illustrated. Fig. 2 The clamped-pinned case. Legend same as Fig. 1.
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The pinned-pinned case is again symmetric with respect to the
midpoint. Figure 4 shows that the optimum location for maximum
strength is at the midpoint for k�1399, then bifurcates to two
branches. Since the pinned-pinned case is fundamental, the nu-
merical values �for one side� are given in Table 2.

Figure 5 shows the pinned-free case, which is not symmetric.
For low k, there is only one maximum, while for large k, two
maxima appeared.

Figure 6 shows the free-free case. The optimum location for
maximum strength is always at the midpoint. The corresponding
buckling forces are 10.28, 20.27, 29.92, 39.19, 48.04, and 58.39
for k=500, 1000, 1500, 2000, 2500, and 4000, respectively.

The free-free case is particularly important since the finite beam
can be reflected about the ends to model an infinite beam with an
infinite series of hinges. If the hinges are evenly spaced with a
distance of L /2, the buckling force is given as above.

Conclusions
We mention the related problem of shape optimization, which

sometimes results in equivalent interior hinges as the area at cer-
tain locations is found to be zero �7–9�. However, these nonuni-
form columns differ from the uniform columns studied in this
paper. For example, for the clamped-hinged case without founda-
tion, we found that the optimum location of an interior hinge on a
uniform column is at c=0.3008, while for the shape optimized
column, the hinge is at c=0.2261 �7�.

Our analytic solutions of the governing equations lead to exact
characteristic determinants. These exact solutions are useful for
checking numerical results for more complicated models of either
the beam or the foundation �5�. All three forms of the analytic
solutions �Eqs. �3�, �5�, and �6�� have been utilized in the deter-
mination of the buckling force.

The buckling of a column with an internal hinge is greatly
influenced by an elastic foundation. The results are complex due
to the interaction of the hinge and the foundation. We see large
changes in the buckling characteristics, which include the uneven
�nonlinear� increase of the buckling force. The optimum locations
of the hinge for maximal buckling force are determined for the
first time. Our graphs and tables will be helpful in the design of
such load bearing columns. It is hoped that some future experi-
ments would confirm our interesting results.
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1 Introduction
This paper deals with inverse dynamic problems in a continu-

ous system, namely, a polar orthotropic circular plate with a
spring. Whereas there are several papers on analytical and numeri-
cal evaluation of the natural frequencies of polar orthotropic cir-
cular plates, there appears to be no work devoted to vibration
tailoring, i.e., the inverse problem. The latter consists in designing
a plate that possesses the desired vibration characteristics. Such
characteristics may include having a prespecified fundamental
natural frequency, or possessing some prespecified natural fre-
quencies, say, the first several natural frequencies, or having a
response to a specified excitation such that it does not reach a
specified frequency level. This paper addresses the design of a
plate with specified fundamental vibration mode, as well as a
preselected natural frequency value. Research in plate vibrations,
in direct eigenvalue problems �when the plate’s characteristics are
given and determination of the spectrum is required�, is given in
the monograph by Leissa �1�. Since then, several papers have been
written on vibration characteristics of polar orthotropic circular
plates. For example, Gupta et al. �2� studied plates with linearly
varying thickness. Chen �3� investigated the case of plates with
arbitrarily varying thickness. Axisymmetric vibrations of a plate
with a parabolically varying profile with restrained elastic edge
were studied by Gupta and Ansari �4� and Luisoni and Laura �5�.
The former studied the polar orthotropic plate, whereas the latter
investigated the rectangular orthotropy. Other pertinent papers in-
clude those by Narita and Leissa �6�, where plates elastically con-
strained along parts of the edge were studied, and Avalos and
Laura �7�, who investigated elastic rotational restraint. Closely
related papers include those of Elishakoff �8�, Gunaratnam and
Bhattacharya �9�, Elishakoff and Meyer �10�, and Pardoen �11�.
The superiority of the formulation in this paper lies in the fact that
we obtain a closed-form solution to the vibration tailoring prob-
lem.

2 Basic Equations
The governing differential equation of the polar orthotropic cir-

cular plate of varying flexural rigidity that undergoes axisymmet-
ric vibrations reads �Leissa �1�� in nondimensional form

zDr
d4V

dz4 + �2Dr + 2z
dDr

dz
+ ��Dr − �rD��d3V

dz3 − � d

dz
�− Dr − z

dDr

dz

− ��Dr + �rD�� − ��

dDr

dz
+

1

z
D��d2V

dz2 − � d

dz
�− ��

dDr

dz

+
1

z
D���dV

dz
− zm�2V�z�R4 = 0 �1�

where z is the nondimensional radial coordinate equals r /R,
V�z�=W�r� /R is the nondimensional displacement, W�r� is the

mode shape, D̃r�r� and D̃��r� are, respectively, radial and circum-
ferential flexural rigidities, �r ,�� are Poisson’s ratios of the ortho-
tropic plate, assumed to be constants, r is the radial coordinate, �
is the material density, h is the thickness, m is the �h mass per unit
area, and � is the natural frequency. Note that in new circum-
stances, the flexural rigidities are functions of z, and Dr�z�
= D̃r�Rz�, D��z�= D̃��Rz�. Since Eq. �1� is a fourth-order differen-
tial equation with respect to z, it appears appropriate to look for
the mode shape as a fourth-order polynomial:

V�z� = �0 + �2z2 + z4 �2�

where �0 and �2 are unknown coefficients. The coefficients �0
and �2 will be determined at a later stage.

The flexural rigidity Dr is sought as a polynomial of the fourth
order since all terms in Eq. �1� are then represented as polynomi-
als of the same order:

Dr�z� = b0 + b1�z − 1� + b2�z − 1�2 + b3�z − 1�3 + b4�z − 1�4 �3�

which implies that coefficients bj have the same dimension. We
consider the case in which D��z� is proportional to Dr�z�, i.e.,
D��z�=k2Dr�z�, where k is taken as a constant.

3 Boundary Conditions
We study a circular plate with a translational spring since prac-

tical situations can better be modeled by the presence of the spring
at the boundary. The boundary conditions are �Leissa �1��

Mr�1� = 0, Qr�1� + PV�1� = 0 �4�

where P= pR3, and

Mr�z� = −
Dr

R
�V� +

��

z
V��, Qr = −

1

R
�Mr

z
+

dMr

dz
−

M�

z
� ,

�5�

M��z� = −
D�

R
��rV� +

1

z
W��

Mr and M� denote the radial bending moment and the circumfer-
ential bending moment, respectively, Qr symbolize the shear
force, p is the stiffness per unit of length of the translational
spring, and prime denotes differentiation with respect to the z
coordinate.

4 Method of Solution
First of all, we need to calculate the coefficients �0 and �2 of

the mode shape given in Eq. �3�. These coefficients can be found
by applying the boundary conditions given in Eq. �4�, which be-
come

2�2 + 12 + k2�r�2�2 + 4� = 0 �6�
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24b0 + 32b0k2�r + 8b0k2 + P�0 + P�0k2�r − 5P + Pk2�r = 0

�7�

Solution of Eqs. �6� and �7� reads

�0 = �− 8b0k2 − 24b0 − 32b0k2�r + 5P + Pk2��/�1 + k2�r�P ,
�8�

�2 = − 2�3 + k2�r�/�1 + k2�r�
Substituting Eq. �8� into Eq. �2�, we get the equation of mode

shape as depending on the coefficient b0 and the translational
spring constant P:

V�z��1 + k2�r�P = − 8b0k2 − 24b0 − 32b0k2�r + 5P + Pk2�r − 2�3

+ k2�r�Pz2 + P�1 + k2�r�z4 �9�
It is natural to expect the dependence on the mode shape of the

spring constant P as well as on the flexural rigidity, which is
represented here by coefficient b0. We are solving a semi-inverse
problem in which the flexural rigidities play the role of the output
that should match the input represented by the mode shape.

It appears instructive to investigate limiting cases, namely,
when P approaches zero or infinity. For the case P=0, Eq. �7�
reduces to

24b0 + 32b0k2�r + 8b0k2 = 0 �10�

Solution of Eq. �10� yields b0=0. The equation for a2 remains the
same as in Eq. �8�. Thus, the mode shape reduces to

V�z� = �0 − 2�3 + k2�r�z2/�1 + k2�r� + z4 �11�

For P becoming unbounded, Eq. �8� becomes �0+�0k2�r−5
+k2�r=0 from which we obtain a0:

�0 = �5 + k2�r�/�1 + k2�r� �12�

For the coefficient �2, we get the same expression as given in
Eq. �8�. Hence, the mode shape remains as in case P=0 in Eq.
�11�. It must be noted that Eq. �11� corresponding to unbounded P
can be directly obtained from Eq. �9� with P set to approach
infinity. The first three terms in parentheses in Eq. �9� are canceled
out, whereas the remaining three terms in parentheses coincide
with Eq. �11�. We first consider the semi-inverse method of solu-
tion associated with k=1. This case is associated with the isotro-
pic plate D��z�=Dr�z�=D�z�, hence ��=�r. The substitution of Eq.
�3�, D��z�=k2Dr�z�, and �9� into the governing differential equa-
tion, where k=1, leads to the following polynomial equation: A0
+A1z+A2z2+A3z3+A4z4+A5z5=0, where Aj depends on bj, �r, m,
P, and R, as well as the sought frequency �. To save space, the
coefficients are not reproduced here except the coefficient A5

=480Pb4+96Pb4�r
2+576Pb4�r−m�2R4−m�2R4P�r=0. From it,

we get the relationship between the natural frequency squared �2

and the coefficient b4:

�2 = 96�5 + �r�b4/mR4 �13�
We obtain the final expression of the radial flexural rigidity as

follows:

D�z�
b4

=
1

2

�35 + 12�r + �r
2��

�1 + �r��� + 240b4 + 48b4�r�
+

11 + �r

1 + �r
−

�12 + 4�r�
1 + �r

z2

+ z4 �14�
The mode shape in Eq. �13� becomes

V�z� = − 16
�35 + 12�r + �r

2��
�1 + �r��240 + � + 48�r�

+
5 + �r

1 + �r
− 2

�3 + �r�
1 + �r

z2 + z4

�15�
Note that Eq. �15� coincides with Eq. �30� in the study by

Elishakoff and Meyer �10�. Figure 1 depicts the variation of flex-
ural rigidity D�z� /b4 versus the radial coordinate z for different
values of � and Poisson’s ratio �r=0.3. For the free plate ��=0�,
the flexural rigidity vanishes at z=1. For the plate with nonzero
translational spring coefficient �, the flexural rigidity D�z� does
not vanish in the region 0�z�1.

5 Semi-Inverse Method of Solution Associated With
k=2 or k=3

In the particular case of k=2, the substitution of Eqs. �3�,
D��z�=k2Dr�z�, and �9� into the governing differential equation
leads to the following fifth-order polynomial equation:

B0 + B1z + B2z2 + B3z3 + B4z4 + B5z5 = 0 �16�

where

B0 = − 16b1�r − 96b4 − 48b2 − 48b3�r − 192b3�r
2 + 32b2�r + 24b1

+ 128b2�r
2 + 256b4�r

2 + 72b3 − 64b1�r
2 + 64b4�r �17�

B1 = 40Pb0 − 112Pb3 + 160Pb0�r + 64Pb2 − 800b4�r − 256Pb2�r
2

− 160Pb1�r + 184Pb4 − 40Pb1 + 320Pb3�r + 128m�2b0R4�r

+ 768Pb3�r
2 − 4m�2PR4�r − 5m�2R4P + 56m�2R4b0

− 1536Pb4�r
2 �18�

Fig. 1 Variation of D„z… versus nondimensional radial coordinate z for
k=1 and Poisson’s ratio �r=0.3 „--- �=10, -.- �=100, — �=1000…
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B2 = 288b3 − 384b4 − 864b2�r + 432b1�r + 192b1�r
2 + 1536b4�r

2

+ 864b3�r + 96b1 − 384b2�r
2 − 192b2 �19�

B3 = 1008b4 + 8m�2R4�r + 512b2�r
2 + 2048b4�r

2 + 6m�2R5

+ 832b2�r + 4160b4�r − 1536b3�r
2 − 2496b3�r + 176b2

− 528b3 �20�

B4 = − 5440b4�r − 1120b4 + 960b3�r
2 + 1360b3�r − 3840b4�r

2

+ 280b3 �21�

B5 = 2016b4�r + 1536b4�r
2 + 408b4 − m�2R4 − 4m�2�rR

4

�22�

Solution of Eq. �22� for the natural frequency squared �2 results
in

�2 = 24�17 + 16�r�b4/mR4 �23�

From Eq. �21�, we get the formula for b3:

b3 = 4b4 �24�

Substitution of Eqs. �23� and �24� into Eq. �20� results in the
expression for b2:

b2 = − 4b4�21 − 4�r − 16�r
2�/�1 + 4�r��11 + 8�r� �25�

Equation �19� gives the expression for b1:

b1 = − 128b4�2 + 3�r + �r
2�/�1 + 4�r��11 + 8�� �26�

The equation resulting from substitution of Eqs. �24� and �25� into
Eq. �18� leads to the formula for b0:

b0 =
256�10 + 47�r + 69�r

2 + 40�r
3 + 8�r

4�P

�1 + 4�r��11 + 8�r��2856b4 + 5P + 20P�r + 9216b4�r + 6144b4�r
2�

b4 �27�

The expression for the flexural rigidity becomes

Dr�z�
b4

=
1

�1 + 4�r��8�r + 11�� 256�10 + 47�r + 69�r
2 + 40�r

3 + 8�r
4�P

�2856b4 + 5P + 20P�r + 9216b4�r + 6144b4�r
2�

+ 139 + 244�r + 96�r
2 + �84 − 16�r − 64�r

2�z

− �150 + 296�r + 68�r
2��z2 + z4 �28�

The mode shape is expressed as

V�z� =
1

1 + 4�r
�−

�10 + 47�r + 69�r
2 + 40�r

3 + 8�r
4��14,336 + 32,768�r�

�1 + 4�r��11 + 8�r��2856 + 5� + 9216�r + 20��r + 6144�r
2�

+ 5 + 4�r − 2�3 + 4�r�z2� + z4 �29�

Figure 2 represents the graph of Dr�z� /b4 for different values of �
and Poisson’s ratio �r=0.3.

For another particular case, namely, k=3, the analogous proce-
dure yields natural frequency squared as follows:

�2 = 288�1 + 3�r�b4/mR4 �30�
The expression for the flexural rigidity reads

Dr�z�
b4

=
1

1 + 9�r
� 1

32

�5 + 14�r + 9�r
2��

�1 + 3�r�
+ 19 + 27�r

− �20 − 36��z2� + z4 �31�

whereas the mode shape is

Fig. 2 Variation of Dr„z… versus nondimensional radial coordinate z for
k=2 and Poisson’s ratio �r=0.3 „--- �=10, -.- �=100, — �=1000…
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V�z� =
1

1 + 9�r
�− 3

�5 + 14�r + 9�r
2�

�1 + 3�r�
+ 5 + 9�r − 2�3 + 9�r�R2z2�

+ z4 �32�

The graph of Dr�z� /b4 is shown in Fig. 3 for different values of
�, while Poisson’s ratio is fixed at �r=0.3.

6 Conclusion
In this paper, we deal with vibration tailoring with the specified

mode shape of the polar orthotropic plate. Like in the classical
works of Newton’s �as quoted in Ref. �12�� and Bertrand’s �13�
problems, the motion of the system is postulated and the cause is
looked after. In the case of Ref. �13�, the cause is the force,
whereas in our study, the cause is represented by the flexural
rigidity.
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The flow through a symmetric, lens-shaped duct is solved by ac-
curate Ritz and perturbation methods. The flow rate (resistance) is
found for various thickness ratios. The flow rate is much better
than friction factor–Reynolds number product as an index for duct
flows, especially for the lens duct studied in this paper. The results
are also important for the torsion of lens-shaped bars.
�DOI: 10.1115/1.2840045�

Introduction
Laminar, fully developed flow in ducts has a wide range of

applications in thermofluid transport processes. Solutions have
been found for a variety of cross sectional shapes �1–3�. The gov-
erning equation is the Poisson equation, which also describes the
torsion of elastic rods and the deformation of uniformly loaded
membranes. See Ref. �4� and the elasticity literature listed in Ref.
�5�. The present paper considers the flow through a duct with a
cross section bounded by two symmetric circular arcs. There are
two reasons for this study. First, the flow properties of this simple
fundamental shape have not been reported before, although some
resistance values were obtained in Ref. �3� by a low accuracy
graphical method. Second, there are some numerical difficulties
for this shape �for example, direct finite difference or finite ele-
ment integration� especially when the thickness of the lens duct
shrinks to zero. To circumvent the deficiencies of direct numerical
integration, we shall use an efficient Ritz method and analytic
perturbation methods.

Ritz Method
Consider a lens-shaped duct of width 2L and thickness ratio b

�1. Normalize all lengths by L and the velocity by �pressure
gradient G� L2 �viscosity ��. The inset of Fig. 2 shows the nor-
malized cross section and the Cartesian axes. The Navier–Stokes
reduce to the Poisson equation,

�2w = − 1 �1�

where w is the longitudinal velocity. Let

c =
1 − b2

2b
�2�

The boundary conditions are that w is zero on the arcs

x2 + �y � c�2 = c2 + 1, − 1 � x � 1 �3�
We shall use the Ritz method, which is most suited to this prob-
lem. The method and its convergence have been known in elas-
ticity �e.g., Ref. �6��, but its applications to fluid mechanics are
less frequent. In essence, the solution to Eq. �1� is equivalent to
minimizing

I =�� �wx
2 + wy

2 − 2w�dxdy �4�

where the double integration is over the whole cross sectional
area. Approximate w by the expansion

w�x,y� = �x2 + �y − c�2 − c2 − 1��x2 + �y + c�2 − c2 − 1�

� �a1 + a2x2 + a3y2 + a4x4 + a5x2y2 + a6y4 + a7x6

+ a8x4y2 + a9x2y4 + a10y6 + a11x
8 + a12x

6y2 + a13x
4y4

+ a14x
2y6 + a15y8 + ¯ �

= �
1

N

ai�i�x,y� �5�

Here, w satisfies the boundary conditions exactly and the series is
even in x and y, complete and convergent in the circle of radius 1.
The number of terms N can be taken as 1, 3, 6, 10, 15, 21, 28, etc.,
containing the highest homogenous powers. Setting the deriva-
tives of Eq. �4� to zero yields the linear algebraic equation

�
j=1

N

aj�ij = �i, i = 1 to N �6�

where

�ij =�� � ��i

�x

�� j

�x
+

��i

�y

�� j

�y
�dxdy �7�

�i =�� �idxdy �8�

We solve for the coefficients ai from Eq. �6� and the velocity from
Eq. �5�. The flow rate, normalized by L4G /�, is then simply

Q =�� wdxdy = �
1

N

ai�i �9�

Let us compare the results of the Ritz method with an exact
solution. Sokolnikoff and Sokolnikoff �7� used conformal map-
ping to solve the torsion of a bar whose cross section is bounded
by two symmetric circular arcs intersecting at a right angle �the
thickness ratio is specific, b=	2−1=0.41421�. Their solution in
terms of fluid flow is

w =
1

4
�1 − x2 − y2� +

1

2	�x2 + y2���1 + x2 + y2�2 − 4y2�

� 
	�x2 + y2���x2 + y2�2 − 1� + x�1 + x2 + y2�

��4y2 − �1 − x2 − y2�2�ln R

+ y�1 − x2 − y2���1 + x2 + y2�2 + 4x2�S� �10�

where

R =
��1 − x2 − y2�2 + 4y2�1/2

�1 + x�2 + y2 , S = tan−1� 2y

1 − x2 − y2� �11�

The maximum velocity is w�0,0�=0.06831. Table 1 shows the
convergence of the maximum velocity to the exact value using the
Ritz method. The error alternates in sign as in a truncated Fourier
series. We see that in taking ten terms, the error is less than 0.1%.
A comparison of velocities elsewhere in the region shows similar
error magnitudes.

However, the Ritz method is poor when the cross section is
close to a circle �b�1�. This is because the exact solution for the
circle is quadratic and is ill represented by the approximation of
Eq. �5�. On the other hand, there are also convergence problems
for very thin cross-sections �b�0�. For these extremes, we shall
use perturbation methods.
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Almost Circular Duct
Since b�1 and c�0, we perturb about c=0, which is the

circle. For y
0, Eq. �3� gives

y2 + 2cy + x2 = 1 �12�

or, in cylindrical coordinates �r ,��,

r = − c sin � + 	1 + c2 sin2 �, 0 � � � 	 �13�

The entire boundary is thus described by

r = − csin � + 	1 + c2 sin2 � � 1 − csin � + c2 sin2 �/2 + O�c3�

� 1 + � �14�

The velocity is also expanded

w = w0 + cw1 + c2w2 + O�c3� �15�

Equation �1� gives

�2w0 = − 1, �2w1 = 0, �2w2 = 0 �16�

The boundary condition are that w is bounded at the origin and
w=0 on r=1+� or

w1+� = w1 + �wr1 + �2wrr1/2 + ¯

= w01 + c�w11 − sin �w0r1�

+ c2�w21 − sin �w1r1 + sin2 ��w0r + w0rr�1/2�

+ ¯ = 0 �17�

The zeroth order is the Poiseuille flow in a circular tube,

w0 = �1 − r2�/4 �18�

Form Eq. �17�, the first order boundary condition is

w11 = −
1

2
sin � = −

1

2�
n=0



An cos�2n�� �19�

Here, An are the Fourier coefficients

A0 =
2

	
, An =

− 4

�4n2 − 1�	
, n = 1,2, . . . �20�

The bounded harmonic solution for w1 is

w1 = −
1

2�
0



Anr2n cos�2n�� �21�

The second order is more involved. From Eq. �17�,

w21 =
1

2
sin2 � − �

0



An cos�2n���
1



Ann cos�2n��

= �
0



Bn cos�2n�� �22�

Here, Bn are the coefficients of each individual harmonic. The
solution is

w2 = �
0



Bnr2n cos�2n�� �23�

The maximum velocity is at the origin

w0 =
1

4
− c

A0

2
+ c2B0 + O�c3� �24�

Let

K�s� =�
0

s

wrdr �25�

Then, the flow rate is

Q = 2�
0

	�
0

1+�

wrdrd�

= 2�
0

	

K�1 + ��d�

= 2�
0

	

�K�1� + �K��1� + �2K��1�/2 + ¯ �d�

= 2�
0

	 ��
0

1

w0rdr + c�
0

1

w1rdr

+ c2�
0

1

w2rdr + c2 sin2 �/4 + ¯ �d� �26�

Due to the integration in �, only the constant terms of the Fourier
expansions are left. From Eq. �22�, we find

B0 =
1

4
−

1

2�
1



nAn
2 =

1

4
−

8

	2�
1


n

�4n2 − 1�2 =
1

4
−

1

	2 �27�

From Eq. �26�, the flow rate is

Q = 2	� 1

16
− c

A0

4
+ c2B0

2
+

c2

8
+ ¯ �

=
	

8
�1 −

8

	
c + �4 −

8

	2�c2 + O�c3�� �28�

For the circle �b=1 or c=0�, Eq. �28� gives the correct value of
	 /8=0.3927 while the Ritz method does not converge. In fact, the
Ritz method is inadequate for b�0.9.

Thin Duct
When the thickness of the duct is small, one can approximate

the flow locally by a parallel plate solution. This has been sug-
gested in Ref. �1� for small aspect ratio ducts. We present here a
systematic perturbation solution such that higher order corrections
can be obtained. The natural expansion parameter is b; thus, let

y = b� �29�

where b�1 and �=O�1�. Now, the velocity is no longer O�1�. A
balance of leading terms in Eq. �1� shows that the proper expan-
sion is

w = b2�w0�x,�� + b2w2�x,�� + ¯ � �30�
Then, Eq. �1� gives

w0�� = − 1 �31�

w2�� + w0xx = 0 �32�
Form Eqs. �2� and �3�, the top boundary is given by

y =	�1 + b2

2b
�2

− x2 −
1 − b2

2b
� �1 − x2�b + x2�1 − x2�b3 + O�b5�

�33�
or the velocity is zero at

Table 1 Convergence of the Ritz method to the exact solution

N 3 6 10 15 Exact

w�0,0� 0.06756 0.06851 0.06824 0.06834 0.06831
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� = �1 = �1 − x2� + x2�1 − x2�b2 + ¯ �34�
An expansion similar to Eq. �17� gives

w0�x,1 − x2� = 0 �35�

w2�x,1 − x2� = − x2�1 − x2�
�

��
w0�x,1 − x2� �36�

The symmetric solution to Eqs. �31� and �35� is

w0 = ��1 − x2�2 − �2�/2 �37�
After some work, the solution to Eqs. �32� and �36� is

w2 = − �1 − 3x2���1 − x2�2 − �2� + x2�1 − x2�2 �38�
Similar to Eq. �26�, the flow rate is

Q = 4b3�
0

1�
0

�1

�w0 + b2w2 + ¯ �d�dx

= 4b3�
0

1 ��
0

1−x2

w0d� + b2x2�1 − x2�w0�x,1 − x2�

+ b2�
0

1−x2

w2d� + ¯ �dx

=
64

105
b3�1 − b2 + O�b4�� �39�

Results and Discussions
Figure 1�a� shows typical constant velocity lines for a lens duct

with a thickness ratio of 0.5. The flow rate is 0.06360, somewhat

less than the value of 0.07854 for an elliptic duct with the same
thickness ratio. Figure 1�b� shows the velocity profiles along the x
and y axes. Note that at the corner �x=1�, the slope of the velocity
�and shear stress� is zero. This can be explained as follows. Let
� ,� be cylindrical coordinates placed at a corner. Then, for small
�, Eq. �1� reduces to the Laplace equation. If the opening angle is
2�, the solution is dominated by �� cos����, where �=	 /2�. The
shear stress at the corner is then zero if ��1 or ��	 /2 �interior
corner�. This behavior at the corner is absent for an elliptic duct.
We note that the lens duct, with two circular arcs, is much easier
to fabricate than the elliptic duct or the rectangular duct.

Figure 2 shows that the flow rate Q increases with the thickness
�ratio� b. The small circle is the exact solution of Ref. �7�, which
confirmed the results of our Ritz method. The small triangles are
the results of Ref. �3� by a less accurate graphical method. Also
shown are the analytical perturbation results, which are more ac-
curate than the Ritz method for extreme values b�0 or b�1.
Combining both our methods, the results are shown in Table 2.

On the other hand, both our methods are superior to direct finite
elements or finite differences. This is because for the latter meth-
ods, both the curved boundary and the sharp corners need to be
compromised. Furthermore, the double numerical integration for
the flow rate introduces additional errors. In contrast, the flow can
be exactly integrated from the perturbation solutions. Since �i are
polynomials, Eqs. �7� and �8� of the Ritz method can also be
exactly integrated. The flow rate �Eq. �9�� is then a simple sum.

The friction factor–Reynolds number product, much used in
engineering, is related to Q by

f Re =
8A3

P2L4Q
�40�

where A is the cross-sectional area and P is the perimeter length,

Fig. 1 „a… Constant velocity lines for a lens duct with a thick-
ness ratio of b=0.5. See the inset of Fig. 2 for dimensions.
Values of constant velocity from the boundary: w=0, 0.02, 0.04,
0.06 and 0.08. „b… Velocity profiles w„x ,0… along the x axis and
w„0,y… along the y axis.

Fig. 2 The normalized flow rate Q as a function of thickness
ratio b. Dashed lines are approximations of Eq. „28… or Eq. „39….
The small circle is the exact solution „Sokolnikoff and Sokolni-
koff †7‡…. Small triangles are from Shah and Bhatti †3‡.

Table 2 The flow rate Q as a function of thickness b

b 0 0.1 0.2 0.3 0.4 0.5
Q 0 0.0006034 0.004698 0.01523 0.03437 0.06364

b 0.6 0.7 0.8 0.9 1
Q 0.1041 0.1564 0.2214 0.3000 0.3927
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A = 2L2��c + b�2 tan−1�1/c� − c�, P = 4L�c + b�tan−1�1/c�
�41�

Table 3 shows the friction factor–Reynolds number product fRe
of the lens duct. The value of 140 /9 for zero thickness ratio is
obtained from asymptotic expansions of Eqs. �39�–�41�.

The flow rate Q seems to be much better than fRe as an index
for duct flows, especially for the lens duct studied in this paper.
The reasons are as follows. First, cross-sectional area and perim-
eter �Eq. �41�� are tedious to calculate. Second, the Reynolds

number is immaterial for laminar duct flows. Third, the value of
fRe �Table 3� is insensitive to thickness ratio, shows a maximum,
and has little physical meaning.

In conclusion, we have successfully determined the flow prop-
erties through a simple lens duct, which may be applied especially
to microfluidics. The results are also useful for the torsion of
lens-shaped rods. Our Ritz method and our systematic modified
perturbation methods are more efficient than direct numerical in-
tegration for this geometry.
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Table 3 Friction factor—Reynolds number products for the
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b 0.6 0.7 0.8 0.9 1
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The accuracy of the Oliver–Pharr approach for nanoindentation
experiments critically depends on the interfacial friction condi-
tion. Although Coulomb friction is often used in finite element
simulations for the correction, the friction stress model may give a
more appropriate physical scenario. The measurement of the tan-
gential contact stiffness by a recently developed multidimensional
nanocontact system provides a direct verification of these two fric-
tion models. Both friction models will predict the tangential stiff-
ness reduction as the consequence of interface microslip, but
quantitative comparison to the experiments supports the friction
stress model. �DOI: 10.1115/1.2871022�

1 Introduction
The Oliver–Pharr approach is frequently used for the measure-

ment of elastic modulus and material hardness using load and
displacement sensing nanoindentation techniques �1,2�. The cen-
tral idea is based on Sneddon’s solution, i.e., the unloading contact
stiffness Sz is given by Sz=dP /d�z=��2 /���E*�A, where P is
the normal indentation force, �z is the normal penetration depth, A
is the contact area, E*= ��1−�1

2� /E1+ �1−�2
2� /E2�−1 is the effective

modulus, E1 and E2 are Young’s moduli, and �1 and �2 are Pois-
son’s ratios of the indenter and the substrate, respectively. The
numerical prefactor � is equal to 1 for frictionless contact. In
practice, � can deviate from unity due to the interfacial friction;
for Berkovich indenter, the difference is about 5%, but for sharper
indenters, the difference can be as large as about 20% �2,3�. In
finite element simulations for the evaluation of this correction
factor �, Coulomb friction is often adopted. However, Coulomb
friction is usually interpreted as a statistical average of multiple
asperities in sliding contact �4,5�, so that it does not formally
apply to the single-asperity nanocontact experiment. On the other

hand, the friction stress model may give a more appropriate physi-
cal picture, in which the friction force is given by �0A, where �0 is
called the friction stress or interfacial shear strength �4,6�. This
model is essentially similar to the cohesive interface model used
in fracture mechanics �7,8�. In this paper, the two friction models
are compared to tangential contact stiffness measurements by a
multidimensional nanocontact system �9�, and it is found that the
friction stress model gives better agreement, suggesting the use of
this model for the evaluation of correction factor �.

2 Experimental Observation and Theory
Combining three nanoindentation actuators in orthogonal direc-

tions, a multidimensional nanocontact system has been developed
to quantitatively examine tangential mechanical properties at the
nano- and mesoscopic length scales �9�. Since the objective of this
work is to use the stiffness measurements to examine the friction
model, the readers are referred to Ref. �9� for experimental details.
The continuous stiffness measurement technique is employed
�1,2�, and the amplitude of the displacement oscillation is subna-
nometer, much smaller than the typical indentation depth. There-
fore, the normal contact stiffness should be a constant value given
by elastic Sneddon’s solution. Similarly, the elastic tangential con-
tact stiffness is given by Sx

elastic=dTx /d�x=8a�*, where Tx and �x
are the tangential force and displacement �applied at distant refer-
ence points�, respectively, a is the contact radius for an arbitrary
axisymmetric indenter �Fig. 1�a��, and the effective shear modulus
is �*= ��2−�1� /�1+ �2−�2� /�2�−1 with shear moduli �1 and �2
for the two contacting solids �9–12�. Therefore, the stiffness ratio
Sx /Sz=4�* /E* can be used to evaluate Poisson’s ratio. Using a
diamond Berkovich indenter �i.e., a three-sided pyramid, which is
often approximated by a cone with half apex angle �=70.3 deg in
numerical simulations� in this multidimensional nanocontact sys-
tem, we have measured the normal and tangential contact stiff-
nesses for fused silica and several other materials. The normal
contact stiffness agrees with the elastic prediction over a wide
regime of indentation depths, from a few to hundreds of nanom-
eters. As shown in Fig. 1�b�, the plateau value of the stiffness ratio
agrees with the elastic prediction 4�* /E*, while the transition at
small indentation depths is due to the tangential stiffness reduc-
tion.

The significant reduction of the tangential contact stiffness rela-
tive to the elastic prediction in Fig. 1�b� occurs when the contact
radius is below about 50–200 nm for the aluminum single crystal,
fused silica, and several other materials. It is rather counterintui-
tive that a small oscillation in the tangential direction �i.e.,
0.7 nm� causes such a significant deviation from the elastic solu-
tion for a contact radius of hundreds of nanometers. This paradox
can be understood by interface microslip phenomenon �10,12�.
For elastic tangential contact, the interface shear stress field,
�xz

elastic=Tx /2�a�a2−r2, i.e., Mindlin solution, shows an inverse-
square-root singularity at the contact edge, where r=�x2+y2 is the
radial coordinate. Consequently, the two contacting surfaces may
start to slip at the contact perimeter, and the annular slip zone
propagates toward the center with an increase of the applied tan-
gential force. The tangential shear stress at the contact edge may
be limited by the Coulomb friction �i.e., ��xz�	q��zz� with the
friction coefficient q� or limited by the shear strength �0 �i.e., the
friction stress�. An important question then arises as to whether
we can validate the friction model from measurement of tangen-
tial contact stiffness, despite that the two models have different
physical origins. In other words, will the Coulomb friction model
and the friction stress model give a noticeable difference in terms
of the tangential contact stiffness?

As shown in Fig. 1�a�, the boundary value problem to be solved
is an axisymmetric contact of two solids subjected to a remote
tangential force, where the interface shear stress in the annular
slip zone c	r	a is either �xz

Coulomb�r�=q��zz�sgn�Tx� for the Cou-
lomb friction model or �xz

cohensive�r�=�0 for the friction stress
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model. In the latter model, the interface shear stress distribution is
independent of the normal stress distribution, while in the former
model we need to know the relationship between P and a. The
normalized mean pressure pm /�Y for a Berkovich contact is a
function of the effective strain �E* /�Y�cot � with the equivalent
half apex angle � �page 176 in Ref. �12��. For fully developed
plastic contact, pm=H�Y where the dimensionless prefactor H de-
pends weakly on the apex angle and material sink-in or pileup.
Finite element simulations show that the contact pressure distri-
bution is qualitatively similar to the elliptical distribution when
pileup occurs for soft materials �2�. Therefore, we can approxi-
mate this problem by the Cattaneo–Mindlin solution �12�. The
interface shear stress distribution and tangential displacement at
the reference point are therefore given by

�xz
Coulomb�r�

=�
3qP

2�a2��1 − 	 r

a

2

−
c

a
�1 − 	 r

c

2� , r 	 c

3qP

2�a2�1 − 	 r

a

2

, c 	 r 	 a�
�1a�

�x
Coulomb =

3qP

16�*a
�1 − 	 c

a

2� �1b�

Tx
Coulomb = qP1 − 	 c

a

3� �1c�

for the Coulomb friction model, and

�xz
cohesive�r� =

�0

�
cos−1�2c2 − a2 − r2

a2 − r2 �, r 	 c �2a�

�x
cohesive =

�0a

2�*
�1 − 	 c

a

2

�2b�

Tx
cohesive = 2�0a2cos−1	 c

a

 +

c

a
�1 − 	 c

a

2� �2c�

for the friction stress model.
For both friction models, the tangential contact stiffness is

found to be Sx=dTx /d�x=8c�*. The slip zone size c can be de-
termined by the applied tangential load from Eq. �1c� or Eq. �2c�,
depending on which friction model is used, or by the applied
tangential displacement from Eq. �1b� or Eq. �2b�. In order to
compare these results to the experiments, the tangential contact
stiffness is given in normalized form:

Sx

Sx,crt
= �

a

acrt
�1 − 	 acrt�x

a�max




,
a�max

acrt�x
� 1

0,
a�max

acrt�x
� 1� �3�

where acrt is a length parameter to normalize the contact radius a,
and Sx,crt=8acrt�* is used to normalize the tangential contact stiff-
ness. From Eqs. �1b� and �2b�, acrt and 
 can be derived, being
acrt

Coulomb=16�*�max /3�qpm and 
Coulomb=1 for the Coulomb fric-
tion model, and acrt

cohesive=2�*�max /�0 and 
cohesive=2 for the fric-
tion stress model. From Eq. �3�, when a�max /acrt�x1, the tan-
gential contact stiffness is indistinguishable from the elastic
contact solution and the size of the stick zone approaches the
contact radius. As a�max /acrt�x decreases, the slip zone size in-
creases, and the tangential contact stiffness can be significantly
lower than the elastic solution. The tangential contact stiffness
becomes zero when a�max /acrt�x�1. The dependence of the nor-
malized tangential contact stiffness on this dimensionless param-
eter a�max /acrt�x has different power exponents 
 in the two fric-
tion models. Consequently, the difference can be evaluated by
fitting the theoretical prediction to the experimental measurements
in Fig. 1.

In order to describe the stiffness measured by the continuous
stiffness measurement method �in which a small harmonic force is
applied to the indenter and the harmonic response of the displace-
ment and phase angle shift are measured�, we approximate it by a

weighted average over �x� �0,�max�, namely, S̄x

= �1 /�max��0
�maxwSxd�x, where the weight function can be chosen

as w=1 �uniform weighted average� or w= �� /2�sin���x /2�max�
�biased weighted average�. The weighted average is used as an
approximation in light of the vibration analysis.

3 Discussion
The composite shear modulus �* and Poisson’s ratio � can be

obtained from the data in the large indentation-depth range in Fig.
1�b�. The amplitude of the displacement oscillation in continuous
stiffness measurements is �max=0.7 nm. The relationship between
the contact radius and the indentation depth can be calibrated
using the Oliver–Pharr approach and the materials with known
elastic constants �1,2,9�. Consequently, the only adjustable param-
eter in Eq. �3� is acrt, which is fitted so as to minimize the mean
square value of the difference between measurements in Fig. 1�b�
and the two weighted averages for Eq. �3�. The results for the two
friction models are presented in Fig. 2. It is seen that Fig. 2�a�
gives much better agreement than Fig. 2�b�, suggesting the valid-
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Fig. 1 „a… Geometric conventions used in the axisymmetric
contact problem. The contact radius is a and the stick zone
radius is c. The slip zone is assumed to be annular. „b… The
ratio of measured tangential to normal contact stiffness is plot-
ted against the penetration depth of a Berkovich diamond in-
denter into the surface of bulk aluminum single crystal and
fused silica „original data from Dr. B. N. Lucas…. Data at large
indentation depths agree with the elastic contact prediction,
and the transient region at small indentation depths will be
used to evaluate the interfacial friction condition.
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ity of the friction stress model. This can be understood from the
different exponents 
 associated with acrt�x /a�max in Eq. �3�. For
Coulomb friction, the tangential stiffness varies slowly with re-
spect to the contact size in Eq. �3�, but the experimental data agree
better with a rapidly varying relationship. The best fit in Fig. 2�a�
gives an error of about 1%, and that in Fig. 2�b� about 8%. The
best fit in Fig. 2�b� for the Coulomb friction model gives
acrt

Coulomb=118 nm. Using �*=15 GPa, �max=0.7 nm, and pm
=105 MPa �assuming H=3 and �Y =35 MPa�, we get a friction
coefficient q=0.7, which is much higher than the typical value

�0.1–0.15 for the friction between diamond and most metals�. In
contrast, Fig. 2�a� gives acrt=192 nm and �0=116 MPa, which is
a reasonable value for the interfacial shear strength in most met-
als. If we assume that the contact pressure is uniform and equal to
a fraction of the hardness, the stress field solutions of the Cou-
lomb friction model will be the same as that of the friction stress
model, with the substitution of �0 by qH�Y. Least squares fitting
will give rise to a friction coefficient q�1.0. Even if we consider
strain gradient effects so that �Y can be several times larger than
the bulk value, the fitted friction coefficient is still unreasonably
high. Consequently, we conclude that the friction stress model
gives a better prediction than the Coulomb friction model. More-
over, the interfacial shear strength between diamond indenter and
fused silica is about �0=295 MPa, so that both materials in Fig. 1
give rise to a ratio �* /�0 of about 100.

In summary, based on the tangential and normal contact stiff-
ness measurements from a multidimensional nanocontact system,
this paper compares two friction models. Interface microslip is
responsible for the reduction of tangential contact stiffness, while
quantitative comparison favors the friction stress model than the
Coulomb friction model. This suggests that the friction stress
model be used to evaluate the correction factor in the contact
stiffness equation.
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(a)

(b)

Fig. 2 Stiffness measurements of aluminum single crystal are
compared to the predictions by the two friction models. Least
squares fittings give rise to acrt

cohesive=192 nm for the friction
stress model in „a…, and acrt

Coulomb=118 nm for the Coulomb fric-
tion model in „b…. The straight and curved solid lines corre-
spond to stiffness ratio at �x=0 and �x=�max, respectively. The
two dashed lines are computed from the uniform weighted av-
erage „top curve, blue color online… and biased weighted aver-
age „bottom curve, magenta color online…. The friction stress
model leads to better agreement with the experiments.
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